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Executive Summary

The aim of the TACITUS project was to elaborate a theory of how knowledge
is used in the interpretation of discourse, and to implement this theory in a
computer system for-understanding naturally generated texts. This research
was carried out between May 1985 and September 1990. The principal
results of the research were as follows:

‘) The development of a theory of inference in discourse interpretation
based on weighted abduction. This has yielded a simple and-elegant
framework in which a broad range on linguistic phenomena can be
investigatedj

')/) The construction of a large knowledge base of commonsense knowl-
edge, particularly for knowledge in the physical domain, with a-more
preliminary extension to social doma,ins) AW)

3& The implementation of the TACITUS system for text understanding,
a system which-has been applied in four different dom@

The first of the corpora to which the system was applied was a small-cor-
pus of CASREP messages, equipment failure reports, which were worked on
between the summer of 1985 and the fall of 1988. The second was a cor-
pus of RAINFORM messages, naval messages about submarine sightings,
which were worked-on in late 1988 and early 1989. The third was-a corpus
of OPREP messages, naval messages about encounters with hostile forces,
which were worked on-in the spring of 1989 in connection with the MUCK-II
evaluation. The fourth is a corpus of terrorist reports, newspaper articles
on terrorist activities, which we began to work on in a small way in the fall
of 1987 and in a big way in the summer of 1990 and which constitutes our
principal thrust in the follow-on to the TACITUS project.

The research done on this project-can be classified into six areas—syntax,
encoding commonsense knowledge, encoding domain knowledge, local prag-
matics, task pragmatics, and knowledge acquisition."Below, we discuss our
efforts and achievements in each of these areas in tufn, citing the-relevant
papers where appropriate. The papers are included/ with and constitute a
part of this final report. (The most important of these papers are Enclosures

5 and 13.) /l/m \
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1 Syntax

We began the project with our syntactic component, the DIALOGIC sys-
tem, already in very strong shape. Most of the developments in the area of
syntactic analysis and semantic translation involved tools to make this com-
ponent easier to use and to fit it into the needs of a discourse interpretation
system based on inference.

In 1985, the principal achievement was the development of a very conve-
nient, menu-based lexical acquisition component, constructed by John Bear.
This allows one to enter hundreds of words into the lexicon in an afternoon.
The component provides its own complete documentation, explaining for
each possible attribute the criteria for determining whether a word has that
attribute. In 1987 Bonnie Lynn Boyd added to the lexicon the most com-
mon 1400 words in English, as determined from the New York Times. In
the spring of 1989, over 1500 new words were added to the lexicon for the
OPREPs domain, and in 1990, another several hundred were added in our
initial work on the terrorist reports.

In 1986 a component was implemented by Paul Martin for converting
the superficial logical form produced by DIALOGIC into a form that is in
accord with the predicate-argument structure in the knowledge base. Thus,
the sentences .

Jphn broke the window.
The window broke.

are both translated into expressions involving the same predicate “break”.
Paul Martin and John Bear also implemented-a means for mapping nomi-
nalizations of verbs into a canonical semantic.representation. A convenient
means for entering the surface-to-deep argument mappings into the lexicon
was added to the lexical acquisition component.

In 1986 John Bear implemented a component that produces a neutral
logical form for many cases of syntactic ambiguity and therefore cuts down
drastically on the number of parses produced. The most common kind of
syntactic ambiguities are handled, viz., prepositional phrase and adverbial
attachment ambiguities, multiply ambiguous compound nominals, and post-
nominal and adverbial gerundive modifiers. A treatment was implemented
for a systematic ambiguity that occurs when a prepositional phrase is pre-
posed-in a relative clause. Representations were worked out for conjunction
ambiguities, but they remain to be implemented. The neutral representation
is in aform that is convenient for the pragmatics component to handle, since
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it turns the ambiguity problems into highly constrained coreference prob-
lems which the pragmatics component is already designed to cope with. This
work is described in a paper entitled “Localizing the Expression of Ambigu-
ity” (Enclosure 1) by John Bear and Jerry Hobbs, published as a technical
report and delivered at the Applied ACL conference in Austin, Texas, in
February 1988. ’

Over the years John Bear made many modifications and improvements
to the morphology compc.ent. This work is described in a paper enti-
tled “A Morphological Re-ognizer with Syntactic and Phonological Rules”
(Enclosure 2), delivered at-the COLING Conference in Bonn, Germany, in
August 1986, and in a paper entitled “Backwards Phonology” (Enclosure
3), delivered at-the COLING Conurence in Helsinki in August 1990.

In 1987 we implemented . treat'uent of sentence fragments, required
for handling the CASREPs, the OPRcPs, and the RAINFORM messages.
Four -patterns were sufficient. We implemented constraints to keep these
rules from generating too many parses and translators to translate them
into-the most likely logical forms. We also implemented ordering heuristics
to.favor nonfragmentary interpretations.

Extensive debugging and documentation was done on the DIALOGIC
grammar throughout the project, and by the spring of 1990, the entire set
of constraints on-the phrase structure rules in the grammar had been docu-
mented with their motivating examples.

In 1988 Bonnie Lynn Boyd and Paul Martin implemented a grammar
for time expressions.

During the spring of 1989, we engaged in a concentrated effort to pre-
pare for the MUCK-II workshop. We had already in 1987 implemented a
framework for applying selectional restrictions in the DIALOGIC system.
This allows us both to rate different readings and to reject readings on the
basis of selectional violations. Then in the spring of 1989, we permeated
the grammar with selectional constraints, so that now virtually every rule
in the grammar applies selection from a predicate to its arguments. In ad-
dition, in the case of conjunctions, the constituents are tested for selectional
congruence. For our specific application, the OPREPs were searched for all
the uses of each word; a categorization was then devised that would allow
the correct parses, and insofar as possible, rule out incorrect parses. Over
1500 words were coded in the lexicon according to these categories.

In addition, in preparing for MUCK-II, the grammar was expanded to
handle the special constructions that occur in OPREPs for times, places,
bearings, longitudes and latitudes, and so on. Several new sentence frag-
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ment rules had to be added as well as several new conjunction rules. The
translators were augmented so that control verbs would pass down their ar-
guments to the verbs or nominalizations they control. Top-down constraints
were encoded where their application would yield significant speed-ups in the
parsing. The interface between the morphological analysis and the parser -
was rewritten to speed that up by an order of magnitude.

Mabry Tyson constructed a preprocessor for the OPREP messages. This
regularized the expression of such things as times, bearings, and longitudes
and latitudes. It mapped other idiosyncratic examples of punctuation into
canonical forms. It performed spelling correction, where possible, on un-
known words.

We implemented a number of simple heuristics as fail-safe devices, for ex-
tracting partial information from failed analyses. We implemented a treat-
ment of unknown words that would allow parsing to proceed, essentially
making the best guess we could on the basis of morphological information,
and otherwise assuming the word was a noun. Where no parses were found,
we-took the longest, highest-ranking substring that parsed as a sentence.
Fail-safe procedures were put into the semantic translation process as well.

Some of the most interesting work done on syntactic processing in this
project was on parse preferences. This took place throughout the project,
but most intensely during the spring of 1989. Since the pragmatics com-
ponent can analyze only the top two or three parses, it is necessary that
the correct parse be first if possible, or at least in the top three. Heuristics
were encoded for preferring some parses over other. The result is that the
DIALOGIC grammar now has a wealth of heuristics for parse preferences,
enabling us to get the best parse first most of the time. This was an empirical
investigation into a question of the utmost importance for practical natural
language systems. Beginning in the summer of 1989, we stepped back to
look at the various heuristics we had implemented and try to make some
sense of-them. Most of the heuristics seem to fall into one of two very broad
categories, organized by principles that we have called the Most Restrictive
Context Principle and the Associate Low and Parallel Principle. John Bear
and Jerry Hobbs collected statistical data from a significant body of text
to test the validity of these heuristics. They were completely borne out.
This work is described in the paper “Two Principles of Parse Preference”
(Enclosure 4), presented at the COLING Conference in Helsinki in August
1990.

In 1990, John Bear began to tackle a problem that is very serious in text
processing, the fact that few parsers today can handle sentences of more




than 20 or 25 words. He is implementing a best-n-paths parser, that pursues
only the most likely parses. So far, the parse preference heuristics costs are
the only factors taken into account and we have already been able to parse
sentences of 35 words. We believe this length will increase significantly once
we gather statistics on the frequencies of constituents and incorporate them
into the scoring procedure.

2 Encoding Commonsense Knowledge

Most of the work we did.on encoding commonsense knowledge 'was done in
1985 and 1986, specifically directed toward the CASREPs. Our aim was
to begin with the most primitive, topological concepts and build up skele-
tal axiomatizations, on paper, for a number of basic domains. We set two
targets for ourselves—to encode the background knowledge necessary for
characterizing all the vocabulary items in the CASREPs, and to encode
all the knowledge necessary for proving the following theorem: “Since the
shape of components of mechanical devices is often functional and since
wear results in the loss of material from the surface of an object, wear of a
component in a device will often cause the device to fail.” We alternated
between a top-down approach beginning with these targets and seeing what
axioms were necessary, and a bottom-up approach axiomatizing the very
basic domains according to our informed intuitions. Among the domains
we produced skeletal axiomatizations for were spatial relationships, time,
measurements, causality, shape, function, and material; we have also ax-
iomatized scalar notions for handling imprecise concepts, and structured
systems to handle such problems as functionality and normativity. Jerry
Hobbs, William Croft, Todd Davies, Douglas Edwards, and Kenneth Laws
wrote a paper about this work, entitled “Commonsense Metaphysics and
Lexical Semantics” (Enclosure 5), delivered at the ACL Conference in New
York in June 1986, and published in a longer version in the journal Com-
putational Linguistics. In addition, Jerry Hobbs delivered a paper at the
TINLAP-3 conference in Las Cruces, New Mexico, in January 1987, enti-
tled “World Knowledge and Word Meaning” (Enclosure 6), describing the
methodology behind our efforts in encoding commonsense knowledge and
lexical semantics.

By the middle of 1986, our efforts had to be diverted to the implemen-
tation of the TACITUS system, and then after 1988 we were diverted from
the CASREPs domain to the RAINFORM and OPREP messages, which re-
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quired different and much less complex background knowledge. Therefore,
work on the large knowledge base “on paper” was mostly suspended. It is for
this reason that the complete knowledge base is not ready for distribution.
We believe it would take several months to put it into publishable form and
would like to do this in connection with the TACITUS follow-on project.

However, one other big push occurred in encoding commonsense knowl-
edge in the summer of 1987. William Croft, who had gone to the Uni-
versity of Michigan, visited SRI for the suremer, and he and Jerry Hobbs
taught a course in the Linguistic Society of America’s Summer Institute of
Linguistics at Stanford University in July and August,-entitled “Linguistic
Typology and Commonsense Reasoning”. This'was based on our work on
the TACITUS knowledge base, and in teaching the course, we were abiu 10
extend our work on the knowledge base quite a bit. We-developed the core
of a theory of the English tense system based on the notion of granularity
that we had previously axiomatized. We also developed the cores of theories
of English spatial prepositions and dimensional adjectives, again based on
granularity. We developed an axiomatization of the notion of causal con-
nectivity, and showed how it led to elegant characterizations of the event
structure expressed in English verbs and role prepositions (work:that linked
up with William Croft’s thesis) and of the manifestations of force dynamics
that Leonard Talmy has identified in language. We also worked out the
‘beginnings of approaches to the modal notions of possibility and necessity.
‘However, we have not had the resources to document this work in a pub-
lishable form.

In 1986 and 1987 we began to concentrate on an implemented knowl-
edge base of around 100 axioms, geared to handling the diagnosis task for
CASREPs. These were tested and honed on a set of a dozen CASREPs.

In 1986 William Croft wrote a highly acclaimed doctoral thesis in lin-
guistics, entitled “Categories and Relations in Syntax: the Clause-level Or-
ganization of Information”. -(This is not included with-the final report.) It
concerned, among other topics, the structure of events and the correspond-
ing structure of linguistic descriptions of events. It introduced a new and
compelling treatment of prepositional arguments of verbs.

In 1986 and 1987 Todd Davies wrote two papers on relevance and anal-
ogy, based in part on his work on this project. The first was “A Norma-
tive Theory of Generalization and Reasoning by Analogy” (Enclosure 7),
published in a book, Analogical Reasoning: Perspectives-of Artificial Intel-
ligence, Cognitive Science, and Philosophy, edited by David Helman. The
second, entitled “A Logical Approach to Reasoning by Analogy” (Enclosure




8) with Stuart J. Russell as coauthor, was delivered at the IJCAI conference
in Milan, Italy, in August 1987,

Alan Biermann, a computational linguist from Duke University, visited
SRI on a sabattical from January to June, 1988, and worked with the TAC-
ITUS project. He developed an implementation of scalar notions and scalar
judgments.

From September 1988 to May 1989, Annelise Bech, a Danish computa-
tional linguist with a background in machine translation, visited SRI as an
international visitor. In connection with analyzing terrorist reports, she and
Jerry Hobbs worked out the outlines of a core theory of “naive sociology”,
encoding knowledge about organizations such as the police, newspapers,
commercial firms, and terrorist organizations, about the roles of members
of such organizatior-, and about claims and responsibility. The key idea
is to view an organization as implementing a hierarchical plan, in the Al
sense, with the members of the organization carrying out the actions in the
plan. A number of the words that occur in the terrorist reports can then be
defined in-terms of this core theory. Bech implemented a small treatment of
the terrorist reports along these lines. This work has not been written up
in publishable form because of lack of resources.

'3 Encoding Domain Knowledge

While we were working on the CASREP domain, especially in 1986, a sig-
nificant amount of work went into encoding domain knowledge, mostly by
Mabry Tyson, Paul Martin, and Jerry Hobbs. We specified the entire start-
ing air compressor system at a rough level, and axiomatized the facts about
the lube oil system. We did this by identifying and axiomatizing various
levels of abstract devices, such as closed producer-consumer systems. On
the one hand, this was to allow us to ignore irrelevant ‘details during text
processing. On the other hand, the abstract devices were to form the ba-
sis of domain acquisition routines; one would be able to encode knowledge
about a device by specifying which abstract device it is, together with ex-
ceptions and additional components. The axiomatizations were anchored in
the commonsense knowledge base. These axiomatizations were put into the
implemented system and used for both interpretation and diagnosis.

This work ceased when the CASREP domain was abandoned. The do-
mainknowledge required for the RAINFORM and-OPREP messages is much
more routine, consisting largely of sort hierarchies.




4 Local Pragmatics, Reasoning, and the Abduc-
tion “Breakthrough”

The most important achievement of the TACITUS project was the discovery
in October 1987 of our method for using abduction for interpreting discourse.
Thus, the story of our work in this area is largely the story of the events
leading up to this discovery.

In late 1985 and early 1986 we organized a weekly discussion group that
consisted of members of both the TACITUS and CANDIDE projects and
included John Bear, William Croft, Douglas Edwards, Jerry Hobbs, Paul
Martin, Fernando Pereira, Ray Perrault, Stuart Shieber, Mark Stickel, and
Mabry Tyson. The group addressed the issues in an area we came to call
“local pragmatics”, those secmingly linguistic problems that require com-
monsense and domain knowledge for their solution. We concentrated on the
problems of reference resolution, interpreting compound nominals, expand-
ing metonymies, and the resolution of syntactic and lexical ambiguities.

Our approach at that time was to build an expression from the logical
form of a sentence, such that a constructive proof-of the expression from the
knowledge base-would constitute an interpretation of the sentence. Within
this framework, we were able to characterize in a very succinct fashion the
most common methods used for these pragmatics problems in previous nat-
ural language systems. For example, a common approach to the compound
nominal problem says the implicit relation in a compound nominal must be
one of a specified set of relations, such as part-of;, in our framework, this
corresponded to treating nn as a predicate constant and including in the
knowledge base an axiom that says a part-of relation implies an nn relation.
We looked at possible constraints on our most general formulations of the
problems. For example, whereas whole-part compound nominals, like “reg-
ulator valve”, are quite common, part-whole compound nominals seem to
be quite rare. We conjectured that this is because of a principle that says
that-noun modifiers should further restrict the possible reference of the noun
phrase, and parts are common to too many wholes to perform that function.

One of the issues the discussion group addressed was what “principles
of minimality” there were that would allow a system to choose among al-
ternative interpretations—principles such as “Introduce the fewest possible
new entities”. It was desirable that these principles of minimality would
interact with-deduction-in that a-deduction component would proceed-so as
to produce the minimal interpretations first. This line of investigation was
eventually subsumed under our weighted abduction scheme.




Another issue addressed by the discussion group was whether two kinds
of knowledge had to be distinguished—“type” knowledge about what kinds
of situations are possible, and “token” knowledge about what the actual
situation is. We examined the role of each of these kinds of knowledge in
the solution of each of the pragmatics problems. For example, reference
seems to require both type and token knowledge, whereas most if not all
instances of metonymy seem to require only type knowledge. This issue was
not followed up in the TACITUS project, but became one of the central
concerns in the CANDIDE project.

We began our initial implementation of the TACITUS system in the
spring of 1986. Paul Martin linked up the DIALOGIC system with Mark
Stickel’s KADS theorem prover by means of a component that constructed
logical expressions to be proved by KADS from the logical form of the sen-
tence produced by DIALOGIC. We worked out and implemented an algo-
rithm for traversing the logical form of a sentence from the inside out and
constructing logical expressions to be proved, such that the proof of each
expression constituted a partial interpretation of the sentence. “Inside out”
means that we first tried to solve reference problems raised by the argu-
ments of a predication and then tried to solve metonymy problems raised by
the predication itself. ‘Compound nominal problems fell out automatically
in this approach. The user was also able to choose an unconstrained -proof
order. By early 1987, the pragmatics processes could optionally use either
KADS or Mark Stickel’s newer Prolog-technology theorem-prover PTTP.

Even at this early stage the implementation was useful as an experimen-
tal vehicle. The use of a theorem-prover for specifically linguistic processing
led to some modifications in the theorem-prover. It turned out that many
kinds of deductive steps that are useful in mathematical theorem-proving
make no sense in linguistic contexts. For example, in mathematics one
frequently wants to assume several arguments of a single predication are
identical, whereas in language this is rarely the case unless coreferentiality
is explicitly signaled. The theorem-proving process was modified to-reflect
this observation.

The first demonstration of the TACITUS system was given in May 1987
at the DARPA Natural Language Workshop in Philadelphia.

The overview of the TACITUS system published in the Finite String
(Enclosure 9) at about this time reflected the state of the implementation
at this point. The approach was described .in greater detail in a paper
by Jerry Hobbs and Paul Martin entitled “Local Pragmatics” (Enclosnre
10), delivered at-the IJCAI conference in Milan, Italy, in August 1987, and




published later in expanded form as a technical report.

The implementation forced us to come to grips with several difficult
problems. The first was the search order problem. How could we, as we
moved from one pragmatics problem to the next, favor a solution consistent
with the previous solutions, and yet allow a complete reinterpretation of the
sentence if necessary? Mark Stickel worked out a method that using the
“inside out” order of interpretation in a “fail-soft” manner that allowed us
to back up over wrong guesses in a graceful manner.

The second problem was that syntactic amhiguity resolution did not

. mesh well with the “inside out” order of interpretation. It was necessary to
develop a method that postponed the attempt to solve syntactic ambiguity
problems until all the relevant information was available. A not very elegant
method was implemented in the spring of 1987 and then made more and
more complex-as we discovered more and more subtle difficulties.

The third problem concerned how informaticn about indefinite entities,
whose existence is being asserted by the sentence, should be used in the
interpretation of presupposed or given parts of the sentence. The problem
was one of using new information-to aid in the interpretation of given infor-
mation. This problem was compounded by the fact that most noun phrases
in the CASREPs-occurred without determiners, so that it was impossible to
tell beforehand whether a noun phrase was definite or indefinite. Struggling
with this problem led us to a greater appreciation for the importance of the
distinction between the asserted, the new, and the indefinite, on the one
hand, and the presupposed, the given, and the definite, on the other. We
implemented a solution to the problem, using what we called “referential
implicatures”,-allowing us to assert the existence of indefinite entities rela-
tive to a particular context of interpretation. This method depended in-a
rather ad hoc way on the heuristic ordering facilities in the theorem-prover.

The fourth problem involved a set of issues surrounding coreference and
reasoning about equality and inequality. The problem was how to capitalize
on the inherent redundancy of natural language texts in a way that would
solve the coreference problems in the text. We considered several methods
involving what we called an “identity implicature”—an assumption that
two entities are identical because it leads to a good interpretation. These
methods struck us as extremely ad hoc and led to disasters in computational
efficiency.

The technical report.- by Jerry Hobbs, entitled “Implicature and. Definite
Reference” (Enclosure 11), laid the theoretical groundwork for referential
and identity implicatures and pointed the way toward the abductive ap-
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proach.
Our dissatisfactions with our solutions to all four problems, especially

* the fourth, led us to suspect that oar whole approach needed to be recon-

ceptualized. We were coming more and more to the conclusion that some
form of abductive inference had to be built into the theorem prover itself,
and we had a number of discussions about how that would be done.

In September 1987 we organized a weekly discussion group to study
the principal papers on abduction and to investigate its relevance to our
problems. The members of the group were Todd Davies, Douglas Edwards,
Jerry Hobbs, Paul Martin, Mark Stickel, and Steven Levinson, a linguist
who was visiting Stanford that year from Cambridge University.

It was after about four of these meetings that Mark Stickel hit upon his
method for weighted abduction, and immediately we realized that it solved
at a stroke all of the problems we had been struggling with. It eliminated
the need for referential and identity implicatures. It allowed us to exploit the
natural redundancy in texts to solve coreference problems as a byproduct
in a way we had not been able to do before. In the next few days we
realized it could be combined with the “parsing as deduction” approach to
yield a simple, elegant, and thorough integration of syntax, semantics, and
pragmatics. Furthermore, this scheme could be used for recognizing the
coherence structure of discourse without very much ex*ra machinery.

We were able to convert the TACITUS system to the new abduction
scheme within two weeks. Mark Stickel implemented the assumption and
scoring mechanisms in the KADS theorem-prover, and Paul Martin modified
the interface of the local pragmatics component with KADS, eliminating the
code for constructing referential implicatures, since this entire approach was
now superseded by abduction.

A demonstration of the new version of the TACITUS system was given
in early November 1987 at the DARPA Natural Language Workshop at SRI
International. We showed its use both in diagnosis from CASREPs and
in database entry from terrorist reports. Because of the generality of our
approach, the latter took only a few days to implement.

This approach is described in a short paper by Jerry Hobbs, Mark Stickel,
Paul Martin, and Douglas Edwards, entitled “Interpretation as Abduction”
(Enclosure 12), delivered at the ACL Conference in Buffalo, New York, in
June 1988, and in a longer paper by Jerry Hobbs, Mark Stickel, Douglas
Appelt,.and Paul Martin, also entitled “Interpretation as Abduction” (En-
closure 13), to be published in the Artificial Intelligence Journal. It is also
described in a very short paper by Jerry Hobbs, entitled “An Integrated Ab-
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ductive Framework for Discourse Interpretation” (Enclosure 14), delivered
at the AAAI Workshop on Abduction at Stanford University in March 1990.
The discussions at this workshop, by the way, indicate that many people in
computational linguistics and artificial intelligence are beginning to see our
approach as a very significant development.

Throughout the first half of 1988, Mark Stickel, Paul Martin, Douglas
Edwards and Jerry Hobbs-continued to test and polish the TACITUS system
on CASREPs and terrorist reports.

Mark Stickel implemented the abduction mechanism in the PTTP sys-
tem. He also explored the formal properties of the weighted abduction
scheme, research that is described in “A Prolog-like Inference System for
Computing Minimum-Cost Abductive Explanations in Natural-Language
Interpretation” (Enclosure 15), a paper delivered at-the International Com-
puter Scien¢e Conference-88 in Hong Kong in December 1988. It was also
described in the paper “Rationale and Methods for Abductive Reasoning
in Natural-Language Interpretation” (Enclosure 16), delivered at the Nat-
ural Language and Logic International Scientific Symposium in Hamburg,
Germany, in May 1989. A short version of this work appears in the paper
“A Method for Abductive Reasoning in Natural-Language Interpretation”
{(Enclosure 17), delivered at the AAAI Workshop.on Abduction at Stanford
University in March 1990.

Our discussion group-on abduction continued and was expanded to in-
clude the members of SRI’s group investigating uncertain reasoning. We
were particularly concerned with the question of how one might optimally
assign values to the parameters of the abduction scheme, and whether any
changes to the method would be suggested by a normative analysis of the
problem of explanation. In considering these questions, we explored inter-
pretations of the assumption cost and weighting variables in terms of prob-
abilities, as well as a decision-theoretic analysis of choosing explanations in
which the goal is well-motivated assignments of utility for different theories.
Some of the results of these discussions are found in Section 8.3 of the long
version of “Interpretation-as Abduction” (Enclosure 13).

On the idea for an integrated syntax, semantics and pragmatics, we
wrote and implemented a moderate-sized grammar integrated with prag-
matics processing in the CASREPs domain, built on top of PTTP. This
implementation was not developed further because the immense effort of
constructing a new grammar of English in the-abductive framework would
have diverted effort from the other goals of the project.

In September 1988, both Paul Martin and Douglas Edwards left SRI,
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and Douglas Appelt joined the TACITUS project to take Martin’s place.
Appelt began to apply the TACITUS system to the RAINFORM messages
as a way of preparing for our MUCK-II effort.

During the preparation for MUCK-II, between March and June 1989,
the abductive reasoning capability of PTTP was extended, and PTTP re-
placed KADS as the reasoning component for interpretation in TACITUS.
With successive refinements of PTTP and careful coding of the axioms,
a substantial speedup was achieved. Major features that were added to
PTTP include propagated assumption costs, admissable and inadmissable
assumption-cost based iterative deepening search methods, and calls on class
hierarchy functions to detect interpretations that violate the class hierarchy.
The interface code between the TACITUS pragmatics component and PTTP
was also developed further. Douglas Appelt implemented the pragmatics for
the OPREPs application. This involved first of all encoding the immense
class hierarchy. Sorts were defined as tightly as possible for the various pred-
icatesin the domain, and these constraints were used to drive the analysis.
A number of axioms were encoded to specify the possible coercion functions
in cases of metonymy and the possible interpretations of the implicit rela-
tions in compound nominals. New ways of using the weights in abductive
axioms were devised that would force schema recognition wherever that was
possible without eliminating the possibility of interpretation where it wasn’t
possible. He and Mark Stickel devised various techniques that resulted in
speed-ups of the abduction process by several orders of magnitude. Most
of these techniques involved imposing various disciplines on how the axioms
were written or imposing different search orders on the proof. These tech-
niques are described in Section 8.1 of the long version of “Interpretation as
Abduction” (Enclosure 13).

Since MUCK-II Douglas Appelt has analyzed the semantics of weights
for the weighted abduction scheme, based on model-preference semantics for
nonmonotonic logics. This work is described in a paper by Appelt entitled,
“A Theory of Abduction Based on Model Preference” (Enclosure 18), deliv-
ered at the AAAI Workshop on Abduction at Stanford University in March
1990.

5 Task Pragmatics

In late 1986 and early 1987, Mabry Tyson implemented heuristics for de-
termining what is true, given the interpretation of a text. To see that this
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is a problem, note that the sentence “Unable to maintain pressure” does
not entail that pressure was not maintained, but it does strongly suggest it.
This determination is not necessarily a step in the interpretation of a text,
but it is necessary before acting on the information conveyed by the text.

In 1987 Mabry Tyson, Jerry Hobbs, and Mark Stickel worked out the
outlines of a metalanguage that would allow one to specify different applica-
tion tasks for the TACITUS system, including diagnosis for the CASREPs
and database entry for the RAINFORM messages. The idea is that the
user’s interests are expressed as logical formulas. Once the syntax and local
pragmatics routines have produced an interpretation of the sentence, the
task pragmatics component uses this information, together with the infor-
mation in the knowledge base, to attempt to prove these logical formulas. If
it succeeds, the appropriate action is taken. This metalanguage was only a
small extension of the logic already handled by“the KADS theorem-prover.
It is described in a technical report by Mabry Tyson and Jerry Hobbs, en-
titled “Domain-Independent Task Specification in- the TACITUS Natural
Language System” (Enclosure 19).

Using the metalanguage, Tyson was able to rapidly implement an ap-
plication of the TACITUS system to the diagnostic task for the CASREPs,
using a causal model of the-domain and the interpretation of the CASREPs
produced by the local pragmatics module. In November 1987 we were able
to use the metalanguage to-implement a database entry application for ter-
rorist reports in less than two days, in a way that differed from the diagnosis
task by only one page of code.

In the spring of 1989, a task component was programmed to take the
results of the interpretation and produce the appropriate database or tem-
plate entries for the MUCK-II task. It was a disappointment that we found
it easier to do this from scratch rather than using the schema recognition
language we had devised carlier. This was largely because the latter could
not easily accommodate the system of answer preferences that was required
in the template fills. We believe now we could go-back and augment the
schema recognition language in light of this experience.

6 Knowledge Acquisition

From late 1987 to early 1989, John Bear and Todd Davies developed a con-

venient knowledge acquisition.component to parallel our lexical acquisition-

component. It is a menu-driven facility that allows the easy specification of
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the properties of predicates, the requirements that predicates place on their
arguments, and the axioms that encode the content of the knowledge base.
This was linked up to the lexical acquisition component so that consistency
could be maintained between the way words were translated into predicates
and the way predicates were used by axioms. It allowed users to enter new
axioms in a simplified version of predicate calculus.

In late 1988 and early 1989, Barney Pell implemented a facility for er-
tering axioms in a convenient subset of English, rather than in the more
cumbersome predicate calculus. He checked all the axioms in our existing
knowledge bases to make sure that his axiom acquisition component had
convenient ways of expressing all the axioms in English.

In 1988 Douglas Edwards developed a visual editor for the TACITUS sort
hierarchy necessary for the-reduction of the search space in the abductive
inference scheme. This editor allowed users to enter-sortal information in
an easy fashion.

7 The MUCK-II Evaluation

In the MUCK-II evaluation, we achieved a slot-recall score of 43% and a
slot-precision score of 87% on-the blind test with the five test messages. As
is-to be-expected, many analyses failed because-of inconsequential-reasons,
such as faulty lexical entries and minor bugs in the code, that reveal nothing
about the inherent capabilities and limits of the technology. On the twenty
test messages distributed in May 1989, we systematically corrected the bugs
involved in failed-analyses, without attempting to extend the power of the
system at all. On-our final run-on these twenty messages, we achieved 72%
recall and-95% precision. We believe these figures more accurately represent
the power of the approach. Our belief at the time of MUCK-II was that with
two more months-effort on this domain, we could have achieved the-same
high-level of performance or slightly better on the 100-message development
set, and very nearly this level of performance on a blind test of adequate
size.

There were both positive and negative aspects to the MUCK-II experi-
ence. On the positive side, it was extremely important to have developed
evaluation methods for message understanding systems. It showed that such
systems are on the verge of having a real impact on society. It provided our
particular project with the opportunity of implementing-a.real, large-scale
application. It droveus toward methods for improving efficiency that we
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might not have discovered otherwise.

On the negative side, the conceptual simplicity of the domain did not
exercise the true power of the abductive approach or of the TACITUS sys-
tem. Much of what we did, in fact, was to simulate standard methods in the
abductive framework. A German computational linguist visiting SRI said,
after seeing a demo, that using TACITUS for the OPREPs was like driving
a Porsche in America. Moreover, an enormous amount of time had to be
spent in taking care of very minor details that were peculiar tothe OPREP
messages or to the MUCK-II evaluation, such things as writing spelling cor-
rectors and making sure the system printed out “USS Enterprise” rather
than “Enterprise”. This was an effort to which SRI brought no special ex-
pertise or insights, and it contributed nothing to our elaboration of a vision
of how discourse is interpreted.

8 Demonstrations

In addition to the demonstrations mentioned above, the TACITUS sys-
tem was demonstrated at the Applied ACL Conference in Austin, Texas,
in February 1988, the ACL Conference in Buffalo, New York, June 1988,
the- AAAI Conference in St. Paul, Minnesota, in August 1988, the MUCK-
II workshop in San-Dicgo in June 1989, and the IJCAI Conference in Detroit
in August 1989. In addition, we have demonstrated the system to numerous
visitors at SRI.
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Localizing Expression of Ambiguity

John Bear and Jerry R. Hobbs
Artificial Intelligence Center
SRI International

Abstract

In this paper we describe an implemented program for localizing
the expression of many types of syntactic ambiguity, in the logical
forms of sentences, in a manner convenient for subsequent inferential
processing. Among the types of ambiguities handled are prepositional
phrases, very compound nominals, adverbials, relative clauses, and
preposed prepositional phrases. The algorithm we use is presented,
and several possible shortcomings and extensions of our method are
discussed.

1 Introduction

Ambiguity is a problem in any natural language processing system. Large
grammars tend to produce large numbers of alternative analyses for even
relatively simple sentences. Furthermore, as is well known, syntactic infor-
mation may be insufficient for selecting a best reading. It may take semantic
knowledge of arbitrary complexity to decide which alternative to choose.

In the TACITUS project [Hobbs, 1986; Hobbs and Martin, 1987} we
are developing a pragmatics component which, given the logical form of
a sentence, uses world knowledge to solve various interpretation problems,
the resolution of syntactic ambiguity among them. Sentences are translated
into logical form by the DIALOGIC system for syntactic and semantic anal-
ysis [Grosz et al., 1982]. In this paper we describe how information about
alternative parses is passed concisely from DIALOGIC to the pragmatics
component, and more generally, we discuss a method of localizing the rep-
resentation of syntactic ambiguity in the logical form of a sentence.

One possible approach to the ambiguity problem would be to produce
a set of logical forms for a sentence, one for each parse tree, and to send
them one at a time to the pragmatics component. This involves considerable




duplication of effort if the logical forms are largely the same and differ only
with respect to attachment. A more efficient approach is to try to localize
the information about the alternate possibilities.

Instead of feeding two logical forms, which differ only with respect to an
attachment site, to a pragmatics component, it is worthwhile trying to con-
dense the information of the two logical forms together into one expression
with a disjunction inside it representing the attachment ambiguity. That
one expression may then be given to a pragmatics component with the ef-
fect that parts of the sentence that would have been processed twice are now
processed only once. The savings can be considerably more dramatic when
a set of five or ten or twenty logical forms can be reduced to one, as is often
the case.

In effect, this approach translates the syntactic ambiguity problem into
a highly constrained coreference problem. It is as though we translated the
sentence in (1) into the two sentences in (2)

(1) John drove down the street in a car.
(2) John drove down the street. It was in a car.

where we knew “it” had to refer either to the street or to the driving. Since
coreference is one of the phenomena the pragmatics component is designed to
cope with [H~hbs and Martin, 1987], such a translation represents progress
toward a solution.

The rest of this paper describes the procedures we use to produce a re-
duced set of logical forms from a larger set. The basic strategy hinges on the
idea of a neutral representation [Hobbs, 1982]. This is similar to the idea
behind Church’s Pseudo-attachment [Church, 1980}, Pereira’s Rightmost
Normal Form [Pereira, 1983], and what Rich et al. refer to as the Procras-
tination Approach to parsing [Rich, Barnett, Wittenburg, and Whittemore,
1986]. However, by expressing the ambiguity as a disjunction in logical
form, we put it into the form most convenient for subsequent inferential
processing,

2 Range of Phenomena

2.1 Attachment Possibilities

There are three representative classes of attachment ambiguities, and we
have implemented our approach to each of these. For each class, we give
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representative examples and show the relevant logical form fragments that
encode the set of possible attachments.

In the first class are those constituents that may attach to either nouns
or verbs.

(3) John saw the man with the telescope.

The prepositional phrase (PP) “with the telescope” can be attached either
to “the man” or to “saw”. If m stands for the man, ¢ for the telescope, and
e for the seeing event, the neutral logical form for the sentence includes

o Awith(y,t) Aly=mVy=elA...

That is, something y is with the telescope, and it is either the man or the
seeing event.

Gerund modifiers may also modify nouns and verbs, resulting in ambi-
guities like that in the sentence

I saw the Grand Canyon, flying to New York.

Their treatment is identical to that of PPs. If g is the Grand Canyon, n is
New York, and e is the seeing event, the neutral logical form will include

oo A fly(yn) A fy=gVy=e A ...

That is, something y is flying to New York, and it is either the Grand Canyon
or the seeing event.!

In the second class are those constituents that can onlv attach to verbs,
such as adverbials. '

George said Sam left his wife yesterday.

Here “yesterday” can modify the saying or the leaving but not “his wife”.
Suppose we take yesterday to be a predicate that applies to events and
specifies something about their times of occurrence, and suppose e; is the
leaving event and e, the saying event. Then the neutral logical form will
include

. A yesterday(y) A fy=e Vy=e] A...

11f the seeing event is flying to New York we can infer that the seer is also flying to
New York,




That is, something y was yesterday and it is either the leaving event or the
saying event. )
Related to this is the case of a relative clause where tha preposed con-

stituent is a PP, which could have been extracted from any of several em-
bedded clauses. In

That was the week during which George thought Sam told his
wife he was leaving,

the thinking, the telling, or the leaving could have been during the week.
Let w be the week, e; the thinking, e; the telling, and e3 the leaving. Then
the neutral logical form will include

oo Nduring(y,w) A fy=e1 Vy=e;
Vy=e3] A ...

That is, something y was during the week, and y is either the thinking, the
telling, or the leaving,.

The third class contains those constituents that may only attach to
nouns, e.g., relative clauses.

This component recycles the oil that flows through the.compres-
sor that is still good.

The second relative clause, “that is still good,” can attach to “compres-
sor”, or “oil”, but not to “flows” or “recycles”. Let o be the oil and ¢ the
compressor. Then, ignoring “still”, the neutral logical form will include

o hgood(y) Aly=cVy=o9A...

That is, something y is still good, and y is either the compressor or the oil.
Similar to this are the compound nominal ambiguities, as in

He inspected the oil filter element.

“Qil” could modify either “filter” or “element”. Let o be the oil, f the filter,
e the element, and nn the implicit relation that is encoded by the nominal
compound construction. Then the neutral logical form will include

oAnn(f,e) Ann(o,y) A fy=fVy=e A...
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That is, there is some implic:t relation nn between the filter and the element,
and there is another implicit relation nn between the oil and something y,
where y is either the filter or the element.

Our treatment of all of these types of ambiguity has been implemented.

In fact, the distinction we base the attachment possibilities on is not
that between nouns and verbs, but that between event variables and entity
variables in the logical form. This means that we would generate logical
forms encoding the attachment of adverbials to event nominalizations in
those cases where the event nouns are translated with event variables. Thus
in '

I read about Judith’s promotion last year.

“last year” would be taken as modifying either the promotion or the reading,
if “promotion” were represented by an event variable in the logical form.

2.2 Single cr Multiple Parse Trees

In addition to classifying attachment phenomena in terms of which kind of
constituent something may attach to, there is another dimension along which
we need to classify the phenomena: does the DIALOGIC parser produce all
possible parses, or only one? For some regular structural ambiguities, such as
very compound nominals, and the “during which” examples, only a single
parse is produced. In this case it is straightforward to produce from the
parse a neutral representation encoding all the possibilities. In the other
cases, however, such as (nonpreposed) PPs, adverbials, and relative clauses,
DIALOGIC produces an exhaustive (and sometimes exhausting) list of the
different possible structures. This distinction is an artifact of our working
in the DIALOGIC system. It would be preferable if there were only one
tree constructed which was somehow neutral with respect to attachment.
However, the DIALOGIC grammar is large and complex, and it would have
been difficult to implement such an approach. Thus, in these cases, one of
the parses, the one corresponding to right association [Kimball, 1973], is
selected, and the neutral representation is generated from that. This makes
it necessary to suppress redundant readings, as described below. (In fact,

limited heuristics for suppressing multiple parse trees have recently been
implemented in DIALOGIC.)




2.3 Thematic Role Ambiguities

Neutral representations are- onstructed for one other kind of ambiguity in
the TACITUS system—ambiguities ir the thematic role or case of the argu-
ments. In the sentence

It broke the window.

we don’t know whether “it” is the agent or the instrument. Suppose the
predicate break takes three arguments, an agent, a patient, and an instru-
ment, and suppose z is whatever is referred to by “it” and w is the window.
Then the neutral logical form will include

e A dreak(y,w,) All=2z Ve =2]A ...

That is, something y; breaks the window with something else y,, and either
1 or ¥, is whatever is referred to by “it".2

2.4 Ambiguities Not Handled

There are other types of structural ambiguity about which we have little to
say. In

They will win one day in Hawaii,

one of the obvious readings is that “one day in H..waii” is an adverbial
phrase. However, another perfectly reasonable reading is that “one day in
Hawaii” is the direct object of the verb “win”. This is due to the verb
having more than one subcategorization frame that could be filled by the
surrounding constituents. It is the existence of this kind of ambiguity that
led to the approach of not having DIALOGIC try to build a single neutral
representation in all cases. A neutral representation for such sentences,
though possible, would be very complicated.

Similarly, we do not attempt to produce neutral representations for for-

tuitous or unsystematic ambiguities such as those exhibited in sentences
like

They are flying planes.
Time flies like an arrow.
Becky saw her duck.

2The treatment of thematic role ambiguities has been implemented by Paul Martin as
part of the interface between DIALOGIC and the pragmatic processes of TACITUS that
translates the logical forms of the sentences into a canonical representation.
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2.5 Resolving Ambiguities

It is beyond the scope of this paper to describe the pragmatics processing
that is intended to resolve the ambiguities (see Hobbs and Martin, 1987).
Nevertheless, we discuss one nontrivial example, just to give the reader a
feel for the kind of processing it is. Consider the sentence

We retained the filter element for future analysis.

We would like the system to infer that the right reading is that “for future
analysis” modifies the verb “retain” and not the NP “filter element”.

Let r be the retaining event, f the filter element, and a the analysis.
Then the logical form for the sentence will include

v A for(y@) Aly=fVy=r]A...

The predicate for, let us say, requires the relation enable(y,a) to obtain
between its arguments. That is, if y is for a, then either y or something
coercible from y must somehow enable a or something coercible from-a. The
TACITUS knowledge base contains axioms encoding the fact that having
something is a prerequisite for analyzing it and the fact that a retaining is
a having. y can thus be equal to r, which is consistent with the constraints
on y. On the other hand, any inference that the filter element enables the
analysis will be much less direct, and consequently will not be chosen.

3 The Algorithm

3.1 Finding Attachment Sites

The logical forms (LFs) that are produced from each of the parse trees
are given to an attachment-finding program which adds, or makes explicit,
information about possible attachment sites. Where this makes some LFs
redundant, as in the prepositional phrase case, the redundant LF's are then
eliminated.

For instance, for the sentence in (4),

(4) John saw the man in the park with the telescope.

DIALOGIC produces five parse-irees, and five corresponding logical forms.
When the attachment-finding routine is run on an LF, it annotates the LF
with information about a set of variables that might be the subject (i.e., the
atlachment site) of each PP.

o




The example below shows the LFs for one of the five readings before
and after the attachment-finding routine is run on it. They are somewhat
simplified for the purposes of exposition. In this notation, a proposition
is a predicate followed by one or more arguments. An argument is a vari-
able or a complex term. A complex term is a variable followed by a “such
that” symbol “|”, followed by a conjunction of one or more propositions.?
Complex terms are enclosed in square brackets for readability. Events are
represented by event variables, as in [Hobbs, 1985), so that see(e;, 21, 23)
means e is a seeing event by z; of 4.

One of sentence (4)’s LFs before attachment-finding is

past([e; | see'(ey,
[wl I JOhn(xl)],
[z2 | man(zq) A
in(z2, [z3 | park(zs) A
with(zs, 24 | telescope(z4)))]))])

The same LI after attachment-finding is

past([e; | see'(e,
[z1 | John(z1)],
[z2 | man(z2) A
n(fys | ;=22 Vo1 = e,
[z3 | park(z3) A
with([y2 | ya=23 V 12=22 V y2=61),

[24 | telescope(za)])])]])

A paraphrase of the latter LF in English would be something like this:
There is an event e; that happened in the past; it is a seeing event by z;
who is John, of 2z who is the man; something y; is in the park, and that
something is either the man or the seeing event; something y; is with a
telescope, and that something is the park, the man, or the seeing event.

The procedure for finding possible attachment sites in order to modify
a logical form is as follows. The program recursively descends an LF, and
keeps lists of the event and entity variables that initiate complex terms.
Event variables associated with tenses are omitted. When the program
arrives at some part of the LF that can have multiple attachment sites,

3This notation can be translated into a Russellian notation, with the consequent loss
of information about grammatical subordination, by repeated appiication of the transior-
mation p(z | Q) = p(z) A Q.




it replaces the explicit argument by an existentially quantified variable g,
determines whether it can be an event variable, an entity variable, or either,
and then encodes the list of possibilities for what y could equal.

3.2 Eliminating Redundant Logical Forms

In those cases where more than one parse tree, and hence more than one log-
ical form, is produced by DIALOGIC, it is necessary to eliminate redundant
readings. In order to do this, once the attachment possibilities are registered,
the LFs are flattened (thus losing temporarily the grammatical subordina-
tion information), and some simplifying preprocessing is done. Each of the
flattened LFs is compared with the others. Any LF that is subsumed by
another is discarded as redundant. One LF subsumes another if the two
LFs are the same except that the first has a list of possible attachment sites
that includes the corresponding list in the second. For example, one LF
for sentence (3) says that “with the telescope” can modify either “saw” or
“the man”, and one says that it modifies “saw”. The first LF subsumes the
second, and the second is discarded and not compared with any other LFs.
Thus, although the LFs are compared pairwise, if all of the ambiguity is due
to only one attachment indeterminacy, each LF is looked at only once.
Frequently, only some of the alternatives may be thrown out. For

Andy said he lost yesterday

after attachment-finding, one logical form allows “yesterday” to be attached
to either the saying or the losing, while another attaches it only to the
saying. The second is subsumed by the first, and thus discarded. However,
there is a third reading in which “yesterday” is the direct object of “lost”
and this neither subsumes nor is subsumed by the others and is retained.

4 Lost Information

4.1 Crossing Dependencies

Our attachment-finding routine constructs a logical form that describes all of
the standard readings of a sentence, but it also describes some nonstandard
readings, namely those corresponding to parse trees with crossing branches,
or crossing dependencies. An example would be a reading of (4) in which
the seeing wes in the park and the man was with the telescope.
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For small numbers of possible attachment sites, this is an acceptable
result. If a sentence is two-ways ambiguous (due just to attachment), we
get no wrong readings. If it is five-ways ambiguous on the standard analysis,
we get six readings. However, in a sentence with a sequence of four PPs,
the standard analysis (and the DIALOGIC parser) get 42 readings, whereas
our single disjunctive LF stands for 120 different readings.

Two things can be said about what to do in these cases where the two
approaches diverge widely. We could argue that sentences with such cross-
ing dependencies do exist in English. There are some plausible sounding
examples.

Specify the length, in bytes, of the word.

Kate saw a man on Sunday with a wooden leg.

In the first, the phrase “in bytes” modifies “specify”, and “of the word”
modifies “the length”. In the second, “on Sunday” modifies “saw” and
“with a wooden leg” modifies “a man”. Stucky [1987] argues that such
examples are acceptable and quite frequent. -

On the other hand, if one feels that these putative examples of cross-
ing dependencies can be explained away and should be ruled out, there
is a way to do it within our framework. One can encode in the LFs a
crossing-dependencies constraint, and consult that constraint when doing
the pragmatic processing.

To handle the crossing-dependencies constraint (which we have not yet
implemented), the program would nreed to keep the list of the logical vari-
ables it constructs. This list would contain three kinds of variables, event
variables, entity variables, and the special variables (the y’s in the LFs
above) representing attachment ambiguities. The list would keep track of
the order in which variables were encountered in descending the LF. A sep-
arate list of just the special y variables also needs to be kept. The strategy
would be that in trying to resolve referents, whenever one tries to instanti-
ate a y variable to something, the other y variables need to be checked, in
accordance with the following constraint:

There cannot be y;, y2 in the list of y’s such that B(y) <
B(y2) < y1 < y2, where B(y;) is the proposed variable to
which y; will be bound or with which it will be coreferential,
and the < operator means “precedes in the list of variables”.

This constraint handles a single phrase that has attachment ambiguities.
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It also works in the case where there is a string of PPs in the subject NP,
and then a string of PPs in the object NP, as in

The man with the telescope in the park lounged on the bark of
a river in the sun.

With the appropriate crossing-dependency constraints, the logical form for
this would be?

past([e; | lounge'(e;,
[z1 | man(zy)A
With([yl I n=xrrvVy= el],
[z2 | telescope(za) A
n([y2 | y2=22Vyr=21Vy2=e1),

[z3 | park(z3)])]))]) A

on(ey,
[24 | bank(z4)
of([ys | ya=24 V y3 = €1,
[zs | river(zs)A
n([ys | ya=2s5 V ya=24 V ya=e1},
o . l=e | sun(ze)])))]) A

crossing-info(< e1, 1, Y1, T2, Y2, T3 >, {¥1, Y2}) A
crossing-info(< e1,Z4, Y3, Ts, Ya, T6 >, {¥3, ¥4})])

4.2 Noncoreference Constraints

One kind of information that is provided by the DIALOGIC system is infor-
mation about coreference and noncoreference insofar as it can be determined
from syntactic structure. Thus, the logical form for

John saw him.

includes the information that “John” and “him” cannot be coreferential.
This interacts with our localization of attachment ambiguity. Consider the
sentence,

John returned Bill’s gift to him.

‘We are assuming “with the telescope” and “in the park” can modify the lounging,
which they certainly can if we place commas before and after them.
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If we attach “to him” to “gift”, “him” can be coreferential with “John” but
it cannot be coreferential with “Bill”. If we attach it to “returned”, “him”
can be coreferential with “Bill” but not with “John”. It is therefore not
enough to say that the “subject” of “to” is either the gift or the returning.
Each alternative carries its own noncoreference constraints with it. We do
not have an elegant solution to this problem. We mention it because, to our
knowledge, this interaction of noncoreference constraints and PP attachment
has not been noticed by other researchers taking similar approaches.

'5 A Note on Literal Meaning

There is an objection one could make to our whole approach. If our logical
forms are taken to be a representation of the “literal meaning” of the sen-
tence, then we would seem to be making the claim that the literal meaning
of sentence (2) is “Using a telescope, John saw a man, or John saw a man
who had a telescope,” whereas the real situation is that either the literal
meaning is “Using a telescope, John saw a man,” or the literal meaning
is “John saw a man who had a telescope.” The disjunction occurs in the
metalanguage, whereas we may seem to be claiming it is in the language.

The misunderstanding behind this objection is that the logical form is
not intended to represent “literal meaning”. There is no general agreement
on precisely what constitutes “literal meaning”, or even whether it is a
coherent notion. In any case, few would argue that the meaning of a sentence
could be determined on the basis of syntactic information alone. The logical
forms produced by the DIALOGIC system are simply intended to encode all
of the information that syntactic processing can extract about the sentence.
Sometimes the best we can come up with in this phase of the processing
is disjunctive information about attachment sites, and that is what the LF
records.

6 Future Extensions

6.1 Extending the Range of Phenomena

The work that has been done demonstrates the feasibility of localizing in
logical form information about attachment ambiguities. There is some mun-
dane programming to do to handle the cases similar to those described here,
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e.g., other forms of postnominal modification. There is also the crossing-
dependency constraint to implement.

" The principal area in which we intend to extend our approach is various
kinds of conjunction ambiguities. Qur approach to some of these cases is
quite similar to what we have presented already. In the sentence,

(5) Mary told us John was offended and George left the
party early.

it is possible for George’s leaving to be conjoined with either John’s being
offended or Mary’s telling. Following Hobbs [1985], conjunction is repre-
sented in logical form by the predicate and’ taking a self argument and two
event variables as its arguments. In (5) suppose e; stands for the telling, e,
for the being offended, e3 for the leaving, and eg for the conjunction. Then
the neutral representation for (5) would include

and'(eo, Yo, €3) A tell'(e1, M, 1)
A(vo=e1 Ay =¢€2)V (%0=¢e2 Ay =ep))

That is, there is a conjunction ep of yo and the leaving e3; there is a telling
e; by Mary of y1; and either yp is the telling e; and y; is the being offended
eg, Or Yo is the being offended e, and y; is the conjunction eq.

A different kind of ambiguity occurs in noun phrase conjunction. In

(6) Where are the British and American ships?

there is a set of British ships and a disjoint sev of American ships, whereas
in

(7) Where are the tall and handsome men?

the natural interpretation is that a single set of men is desired, consisting
of men who are both tall and handsome.

In TACITUS, noun phrase conjunction is encoded with the predicate
andn, taking three sets as its arguments. The expression andn(s;, sz, s3)
means that the set s; is the union of sets s, and s3.5 Following Hobbs [1983],
the representation of plurals involves a set and a typical element of the set, or
a reified universally quanti; - variable ranging over the elements of the set.
Properties like cardinality are properties of the set itself, while properties

°If either s; or 87 is not a set, the singleton set consisting of just that element is used
instead.
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that hold for each of the elements are properties of the typical element.
An axiom schema specifies that any properties of the typical eiement are
inherited by the individual, actual elements.® Thus, the phrase “British and
American ships” is translated into the set s; such that

andn(si, S2,83) A typelt(zy,s1) A ship(z1)
Atypelt(za,s2) A British(z,)
Atypelt(zs,s3) A American(zs)

That is, the typical element z; of the set s; is a ship, and s; is the union
of the sets so and s3, where the typical element x5 of sq is British, and the
typical element z3 of s3 is American.

The phrase “tall and handsome men” can be represented in the same
way.

andn(sy, s2,83) A typelt(zy,s1) A man(z,)
Atypelt(zq,s2) A tall(zy)
Atypelt(zs,s3) A handsome(zs)

Then it is a matter for pragmatic processing to discover that the set sp of
tall men and the set s3 of handsome men are in fact identical.

In this representational framework, the treatment given to the kind of
ambiguity illustrated in

I like intelligent men and women.

resembles the treatinent given to attachment ambiguities. The neutral log-
ical form would include

. A andn(sy, s2, 83) A typelt(zy,s1)
Atypelt(z2,s2) A man(z2)
A typelt(zz,s3) A woman(zs)
Aintelligent(y) A [y=21 V y = 24}

That is, there is a set s;, with typical element z;, which is the union of
sets s; and 83, where the typical element z; of s, is 2 man and the typical
element 23 of s3 is a woman, and something y is intelligent, where y is either
the typical element z; of s; (the typical person) or the typical element z,
of s (the typical man).

Ambiguities in conjoined compound nominals can be represented simi-
larly. The representation for

%The reader may with some justification feel that the term “typical element” is ill-
chosen. He or she is invited to suggest a better term.
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oil pump and filter

would include

... A andn(s,p, f) A typelt(z,s) A pump(p)
A filter(f) A 0il(0) A nn(o,y)
AMy=pVy=12]

That is, there is a set s, with typical element &, composed of the elements p
and f, where pis a pump and f is a filter, and there is some implicit relation
nn between some oil o and y, where y is either the pump p or the typical
element z or s. (In the latter case, the axiom in the TACITUS system’s
knowledge base,

(Yw,z,y,2,8)nn(w,z) A typelt(z,s)
A andn(s,y, )
= nn(w,y) A nn(w, 2)

allows the nn relation to be distributed to the two conjuncts.)

6.2 Ordering Heuristics

So far we have only been concerned with specifying the set of possible attach-
ment sites. However, it is true, empirically, that certain attachment sites
canr be favored over others, strictly on the basis of syntactic (and simple
semantic) information alone.”

For example, for the prepositional phrase attachment problem, an infor-
mal study of several hundred examples suggests that a very good heuristic is
obtained by using the following three principles: (1) favor right association,;
(2) override right association if (a) the PP is temporal and the second nearest
attachment site is a verb or event nominalization, or (b) if the preposition
typically signals an argument of the second nearest attachment site (verb or
relational noun) and not of the nearest attachment site; (3) override right
association if a comma (or comma intonation) separates the PP from the
nearest attachment site. The preposition“of” should be treated specially;
for “of” PPs, right association is correct over 98% of the time.

There are two roles such a heuristic ordering of possibilities can play. In a
system without sophisticated semantic or pragmatic processing, the favored
attachment could simply be selected. On the other hand, in a system such

"There is a vast literature on this topic. For a good introduction, see Dowty, Karttunen,
and Zwicky [1985)].




as TACITUS in which complex inference procedures access world knowledge
in interpreting a text, the heuristic ordering can influence an allocation of
computational resources to the various possibilities. -
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Appendix

John saw the man with the telescope.

Logical Form before Attachment-Finding:

((PAST
(SELF E11)
(SUBJECT
(E3
(SEE
(SELF E3)
(SUBJECT X1 (JOHN (SELF E2) (SUBJECT X1))))
(OBJECT (X4 (MAN (SELF ES) (SUBJECT X4))
(WITH (SELF t6)
; Here [with] modifies [man]
(PP-SUBJECT X4)
(OBJECT (X7 (TELESCOPE (SELF E8)
(SUBJECT X7))
(THE (SELF E9)
(SUBJECT X7))
(NOT= (NP X7)
(ANTES (X4))))))
(THE (SELF E10) (SUBJECT X4))
(NOT= (NP X4) (ANTES (X1)))))N)N
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Logical Form after Attachment-Finding:

((PAST
(SELF Ei11)
(SUBJECT
(E3
(SEE
(SELF E3)
(SUBJECT (X1 (JOHN (SELF E2) (SUBJECT X1))))
(OBJECT (X4 (MAN (SELF ES5) (SUBJECT X4))
(WITH (SELF E6)
; Here [with] modifies [man] or [saw]
(SUBJECT (Y14 (?= (NP Yi4)
(ANTES (X4 E3)))))
(OBJECT (X7 (TELESCGPE (SELF E8)
(SUBJECT X7))
(THE (SELF E9)
(SUBJECT X7))
(NOT= (NP X7-
(ANTES (X4))))))
(THE (SELF E10) (SUBJECT X4))
(NOT= (NP X4) (ANTES (X1)NNINN
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A MORPHOLOGICAL RECOGNIZER
WITH SYNTACTIC AND
PHONOLOGICAL RULES

John Bear
SRI International
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Abstract

This paper describes a morphological analyzer which, when pars-
ing a word, uses two sets of rules: rules describing the syntax of words,
and rules describing facts about orthography.

1 Introduction!

In many natural language processing systems currently in use, the morpho-
logical phenomena are handled by programs which do not interpret any sort
of rules, but rather contain references to specific morphemes, graphemes,
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supplied the initial English automata on which the orthographic grammar was based, while
Fernando furnished some of the Prolog code. Both provided many helpful suggestions and
explanations as well. I would also like to thank Kimmo Koskenniemi for his comments on
an earlier draft of this paper.

This research was supported by the following grants: Naval Electronics Systems Com-
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N00014-85-C-0013.
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and grammatical categories. Reccatly Kaplan, Kay, Koskenniemi, and
Karttunen have shown how to construct morphological analyzers in which
the descriptions of the orthographic and syntactic phenomena are separable
from the code. This paper describes a system that builds on their work in
the area of phonology/orthography and also has a well defined syntactic
component which applies to the area of computational morphology for the
first time some of the tools that have been used in syntactic analysis for
quite a while.

This paper has two main parts. The first deals with the orthographic as-
pects of morphological analysis, the second with its syntactic aspects. The
orthographic phenomena constitute a blend of phonology and orthography.
The orthographic rules given in this paper closely resemble phonological
rules, both in form and function, but because their purpose is the descrip-
tion of orthographic facts, the words orthography and orthographic will be
used in preference to phonology and phonological.

The overall goal of the work described herein is the development of a
flexible, usable morphological analyzer in which the rules for both syntax
and spelling are (1) separate from the code, and (2) descriptively powerful
enough to handle the phenomena encountered when working with texts of
written language.

2 Orthography

The researchers mentioned above use finite-state transducers for stipulat-
ing correspondences between surface segments, and underlying segments.
In contrast, the system described in this paper does not use finite state ma-
chines. Instead, orthographic rules are interpreted directly, as constraints
on pairings of surface strings with lexical strings.

The rule notation employed, including conventions for expressing ab-
breviations, is based on that described in Koskenniemi [1983,1984]. The
rules actually used in this system are based on the account of English in
Karttunen and Wittenburg [1983].
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2.1 Rules

What follows is an inductive introduction to the types of rules needed. Some
pertinent data will be presented, then some potential rules for handling
these data. We shall also discuss the reasons for needing a weaker form of
rule and indicate what it might look like.

Let us first consider some data regarding English /s/ morphemes:

ALWAYS -ES
box+s +— boxes
class+s +— classes
fizz+s «—— fizzes
spy-+s «+— spies
ash-s «—— ashes
church+s «— churches
ALWAYS -S
slam+s «— slams
hit+s «— hits
tip+s «— tips

SOMETIMES -ES,
SOMETIMES -S

piano+s +— pianos

solo+s +— solos

do+s +—— does

potato+-s «+— potatoes
banjo+s +— banjoes or banjos
cargo+s +— cargoes or cargos

Below are presented two possible orthographic rules for describing the
foregoing data:

R1) + —e{x|z|y/i|s(h)|ch}_s
R2) + —e{x|z|y/i|s(h)[ch]|o}.s

The first of these rules will be shown to be too weak; the second, in contrast,
will be shown to be too stron

shown ong.

Thic farct will serve ags an arcument for
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introducing a second kind of rule.
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Before describing how the rules should be read, it is necessary to define
two technical terms. In phonology, one speaks of underlying segments and
surface segments; in orthography, characters making up the words in the
lexicon contrast with characters in word forms that occur in texts. The
term lezical character will be used here to refer to a character in a word
or morpheme in the lexicon, i.e., the analog of a phonological underlying
segment. The term surface character will be used to mean a character in a
word that could appear in text. For example, [l o v e + e d] is a string of
lexical characters, while [l o v e d} is a string of surface characiers.

We may now describe how the rules should be read. The first rule
should be read roughly as, “a morpheme boundary [+] at the lexical level
corresponds to an [e] at the surface level whenever it is between an [x] and
an [s], or between a [z] and an [s], or between a lexical [y] corresponding
to a surface [i] and an [s], or between an [s h} and an [s] or between a [c h]
and an [s].” This means, for instance, that the string of lexical characters
[church + s corresponds to the string of surface characters church
e s] (forgetting for the moment about the possibility that other rules might
also obtain). The second rule is identical to the first except for an added
[0] in the left context.

When we say [+] corresponds to [e] between an [x] and an [s], we mean
between a lexical [x] corresponding to a surface [x] and a lexical [s] corr -
sponding to a surface [s]. If we wanted to say that it does not matter wh-*
the lexical [x] corresponds to on the surface, we would use [x/=] inste:
just [x]. :

The rules given above get the facts right for the words that do not
end in [o]. For those that do, however, Rule 1 misses on [do+s] <=
[does], [potato+s] <=> [potatoes); Rule 2 misses on [piano+s] <=> [pianos],
[solo+s] <=> [solos]. Furthermore, neither rule allows for the possibility of
more than one acceptable form, as in [banjo-+s] <= ([banjoes| or [banjos}),
[cargo+s] <=> ([cargoes] or [cargos]).

The words ending in [0] can be divided into two classes: those that take
an [es] in their plural and third-person singular forms, and those that just
take an [s]. Most of the facts could be described correctly by adopting
one of the two rules, e.g., the one stating that words ending in o] take an
les] ending. In addition tc adopting this rule, cne would need to list 2ll
the words taking an [s] ending as being irregular. This approach has two
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problems. First, no matter which rule is chosen, a very large number of
words would have to be listed in the lexicon; second, this approach does
not account for the coexistence of two alternative forms for some words,
e.g., [banjoes| or [banjos].

The data and arguments just given suggest the need for a second type
of rule. It would stipulate that such and such a correspondence is allowed
but not required. An example of such a rule is given below:

R3) +/e allowed in context o _s.

Rule 3 says that a morpheme boundary may correspond to an [e] be-
tween an [o] and an [s]. It also has the effect of saying that if a morpheme
boundary ever corresponds to an [e], it must be in a context that is explicitly
allowed by some rule.

If we now have the two rules R1 and R3,

RI)+ —e/ x|z |y/ils () [ch} s
R3) +/e allowed in context o _s,

we can generate all the correct forms for the data given. Furthermore, for
the words that have two acceptable forms for plural or third person singular,
we get both, just as we would like. The problem is that we generate both
forms whether we want them or not. Clearly some sort of restriction on the
rules, or “fine tuning,” is in order; for the time being, however, the problem
of deriving both forms is not so serious that it cannot be tolerated.

So far we have two kinds of rules, those stating that a correspondence
always obtains in a certain environment, and those stating that a cor-
respondence is allowed to obtain in some environment. The data below
argue for one more type of rule, namely, a rule stipulating that a certain
correspondence never obtains in a certain environment.

DATA FOR CONSONANT DOUBLING
DOUBLING:

bar+ed +— barred

big+est +—— biggest

referd-ed +— referred

- -

NO DOUBLING:
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question+ing «— questioning
hear+ing «— hearing
hack+ing «+— hacking

BOTH POSSIBILITIES:
travel+ed «— (travelled or traveled) both are allowed

In English, final consonants are doubled if they, “follow a single [ortho-
graphic] vowel and the vowel is stressed.” [from Karttunen and Wittenburg
1983]. So for instance, in [hear+ing], the final [r] is preceded by two vowels,
so there is no doubling. In [hack-+ing], the final [k is not preceded by a
vowel, so there is no doubling. In [question-+ing], the last syllable is not
stressed so again there is no doubling.

In Karttunen and Wittenburg [1983] there is a single rule listed to de-
scribe the data. However, the rule makes use of a diacritic () for showing
stress, and words in the lexicon must contain this diacritic in order for the
rule to work. The same thing could be done in the system being described
here, but it was deemed undesirable to allow words in the lexicon to contain
diacritics encoding information such as stress. Instead, the following rules
are used. Ultimately, the goal is to have some sort of general mechanism,
perhaps negative rule features, for dealing with this sort of thing, but for
now no such mechanism has been implemented.

RULES FOR CONSONANT DOUBLING
“Allowed-type” rules

‘“+'/b allowed in context vV b _ vV?
‘+’/c allowed in context vV ¢ _ vV
‘+’/d allowed in context vV d _ vV
‘“+’/f allowed in context vV f _ vV
‘“+’/g allowed in context vV g _ vV
‘+'/1 allowed in context vV 1 _vV
‘+’/m allowed in context vV m _ vV
‘+’/n allowed in context vV n . vV
‘4’ /p allowed in context vV p _ vV
‘+’/r allowed in context vV r _ vV

2In these rules, the symbol vV stands for any elemeni of the following set of orthographic
vowels: {a,e,i,ou}.
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‘+’/s allowed in context vV s _ vV
‘+’/t allowed in context vV t _ vV
‘+’/z allowed in context vV z _ vV

“Disallowed-type” rules

‘+’/b disallowed in context vV vV b _ vV
‘+’/c disallowed in context vV vV ¢ _ vV
‘+’/d disallowed in context vV vV d _ vV
‘+’/f disallowed in context vV vV f _ vV
‘4’ /g disallowed in context vV vV g _ vV
‘+’/1 disallowed in context vV vV 1_.vV
‘4+’/m disallowed in context vV vV m _ vV
‘+’/n disallowed in context vV vV n _vV
‘+'/p disallowed in context vV vV p vV
‘+’/r disallowed in context vV vV r _vV
‘+’/s disallowed in context vV vV s _ vV
‘+'/t disallowed in context vV vV ¢ _vV
‘+’/z disallowed in context vV vV z _ vV

The allowed-type rules in the top set are those that license consonant
doubling. The disallowed-type rules in the second set constrain the doubling
so it does not occur in words like [eat+ing] <=> [eating] and [hear+ing]
<=> |hearing]. The disallowed-type rules say that a morpheme boundary
[+] may not ever correspond to a consonant when the [+] is followed by a
vowel and preceded by that same consonant and then two more vowels.

The rules given above suffer from the same problem as the previous
rules, namely, over generation. Although they produce all the right an-
swers and allow multiple forms for words like [travel+er] <= ([traveller]
or [traveler]), which is certainly a positive result, they also allow multiple
forms for words which do not allow them. For instance they generate both
[referred] and [refered]. As mentioned earlier, this problem will be tolerated
for the time being.

2.2 Comparison with Koskenniemi’s Rules

- f

Koskenniemi {1983, 1984] describes three types of rules, as exemplified be-
low:
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R4) a > b =>c/d e/f _g/h i/]
R5) a > b <=c/de/f - g/hifj
R6) a > b <= c/d e/f _g/h i/j.

Rule R4 says that if a lexical [a] corresponds to a surface [b], then it
must be within the context given, i.e., it must be preceded by [c/d e/f} and
followed by [g/h i/j]. This corresponds exactly to the rule given below:

R7) a/b allowed in context c/d e/f _ g/h i/].

The rule introduced as R5 and repeated below says that if a lexical [a]
occurs following [c/d e/f] and preceding [g/h i/j], then it must correspond
to a surface [b):

R5)a>b<«=c/de/f _g/hifj.
The corresponding rule in the formalism being proposed here wculd look
approximately like this:

R10) a/sS disallowed in context c/d e/f _g/h i/j,

where sS is some set of characters to which [a]
can correspond that does not include [b)}.

A comparison of each system’s third type of rule involves compostion
of rules and is the subject of the next section.

2.3 Rule Composition and Decomposition

In Koskenniemi’s systems, rule composition is fairly straightforward. Sam-
ples of the three types of rules are repeated here:

R4)a>b=>c/de/f _g/hifj

R5)a>b <=c/de/f _g/hifj
R6)a >b <= c/de/f _g/hifj
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If a grammar contains the two rules, R4 and R5, they can be replaced by
the single rule R6.

In contrast, the composition of rules in the system proposed here is
slightly more complicated. We need the notion of a default correspon-
dence. The default correspondence for any alphabetic character is itself.
In other words, in the absence of any rules, an alphabetic character will
correspond to itself. There may also be characters that are not alpha-
betic, e.g., the [+] representing a morpheme boundary, currently the only
non-alphabetic character in this system. Other conceivable non-alphabetic
characters would be an accent mark for representing stress, or say, a hash
mark for word boundaries. The default for these characters is that they
correspond to O (zero). Zero is the name for the null character used in this
system.

Now it is easy to say how rules are composed in this system. If a
grammar contains both R11 and R12 kelow, then R13 may be substituted
for them with the same effect:

R11) a/b allowed in context c¢/d e/f _g/h i/j
R12) a/ “a’s default” disallowed in context c/d e/f _ g/h i/;
R13)a— b /c/de/f _g/hifj

In fact, when a file of rules is read into the system, occurrences of rules like
R13 are internalized as if the grammar really contained a rule like R11 and
another like R12.

2.4 TUsing the Rules

Again consider for an example the rule R1 repeated below.
R1)+ — e/ {x|z|y/ils (h) [ch}_s

When this rule is read in, it is expanded into a set of rules whose contexts
do not contain disjunction or optionality. Rules R14 through R19 are the
result of the expansion:

R14) '+’ — e /x5
R15) ‘4’ — e [z.5




R16) ‘“+’' —v e [ y/i.s
R17) ‘4’ — e /s s

R18) ‘+’ — e /sh_s
R19) 4+’ — e /ch _s.

R14 through R19 are in turn expanded automatically into R20 through
R31 below:

R20) ‘+’/0 disallowed in context x _s
R21) ‘+’/0 disallowed in context z _s
R22) ‘+’/0 disallowed in context y/i _ s
R23) ‘4-’/0 disallowed in context s . s
R24) ‘4’/0 disallowed in context s h _s
R25) ‘+°/0 disallowed in context c h _s

)
R26) ‘+’/e allowed in context x _s
R27) ‘+’/e allowed in context z _s
R28} ‘+’/e allowed in context y/i _s
R29) ‘+’/e allowed in context s _ s
R30) ‘+’/e allowed in context s h _s
R31) ‘+’/e allowed in context ¢ h _s.

The disallowed-type rules given here stipulate that 2 morpheme bound-
ary, lexical [+], may never be paired with a null surface character, [0], in
the environments indicated. Another way to describe what disallowed-type
rules do, in general, is to say that they expressly rule out certain sequences
of pairs of letters. For example, R20

R20) +/0 disallowed in context x _s
states that the sequence

ce X+ 8.,

...x0s...

is never permitted to be a part of a mapping of a surface string to a lexical
string.

The allowed-type rules behave slightly differently than their disallowed-
type counterparts. A rule such as
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R26) ‘+’/e allowed in context x s,

says that lexical [+] is not normally allowed to correspond to surface [e]. It
also affirms that lexical [+] may appear between an [x] and an [s]. Other
rules starting with the same pair say, in effect, “here is another envircnment
where this pair is acceptable.” The way these rules are to be interpreted is
that a rule’s main correspondence, i.e., the character pair that corresponds
to the underscore in the context, is forbidden except in contexts where it
is expressly permitted by some rule.

Once the rules are broken into the more primitive allowed-type and
disallowed-type rules, there are several ways in which one could try to match
them against a string of surface characters in the recognition process. One
way would be to wait until a pair of characters was encountered that was
the main pair for a rule, and then look backwards to see if the left context of
the rule matches the current analysis path. If it does, put the right context
on hold to see whether it will ultimately be matched.

Another possiblility would be to continually keep track of the left con-
texts of rules that are matching the characters at hand, so that when the
main character of a rule is encountered, the program already knows that
the left context has been matched. The right context still needs to be put
on hold and dealt with the same way as in the other scheme.

The second of the two strategies is the one actually employed in this
system, though it may very well turn out that the first one is more efficient
for the current grammar of English.

2.5 Possible Correspondences

The rules act as filters to weed out sequences of character pairs, but before
a particular mapping car: be weeded out, something needs tc propose it as
being possible. There is a list — called a list of possible correspondences,
or sometimes, a list of feasible pairs — that tells which characters may
correspond to which others. Using this list, the recognizer generates possi-
ble lexical forms to correspond to the input surface form. These can then
be checked against the rules and against the lexicon. If the rules do not
weed it out, and it is also in the lexicon, we have successfully recognized a
morpheme.
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3 Syntax

The goal of the work being described was an analyzer that would be easy
to use. In the area of syntax, this entails two subgoals. First, it should
be easy to specify which morphemes may combine with which, and second,
when the recognition has been completed, the result should be something
that can easily be used by a parser or some other program.

Karttunen [1983] and Karttunen and Wittenburg [1983] have some sug-
gestions for what a proper syntactic component for a morphological ana-
lyzer might contain. They mention using context-free rules and some sort
of feature-handling system as possible extensions of both their and Kosken-
niemi’s systems. In short, it has been acknowledged that any such system
really ought to have some of the tools that have been used in syntax proper.

The first course of action that was followed in building this analyzer was
to implement a unification system for dags (directed acyclic graphs), and
then to have the analyzer unify the dags of all the morphemes encountered
in a single analysis. That scheme turned out to be too weak to be practical.
The next step was to implement a PATR rule interpreter [Shieber, et al.
1983] so that selected paths of dags could be unified. Finally, when that
turned out to be still less flexible than one would like, the cepability of
handling disjunction in the dags was added to the unification package, and
the PATR rule interpreter [Karttunen 1984].

The rules look like PATR rules with the context free skeleton. The first
two lines of a rule are just a comment, however, and are not used in doing
the analysis. The recognizer starts with the dag [cat: empty]. The rule
below states that the "empty” dag may be combined with the dag from a
verb stem to produce a dag for a verb.

% verb — empty + verb_stem
% 1 2 - 3

<2 cat> = empty

<3 cat> = verb.stem

<3 type> = regular

<1 type> = <3 type>

<1 cat> = verb

<1 word> = <3 lex>
12




<1 form> = {inf
[tense: pres

pers: {12}]}. i

The resulting dag will be ambiguous between an infinitive verb, and a
present tense verb that is in either the first or second person. (The braces :
in the rule are the indicators of disjunction.) The verb stem’s value for the 3
feature lez will be whatever spelling the stem has. This value will then be
the value for the feature word in the new dag.

The analyzer applies these rules in a very simple way. It always carries
along a dag representing the results found thus far. Initially this dag is
[cat: empty]. When a morpheme is found, the analyzer tries to combine it,
via a rule, with the dag it has been carrying along. If the rule succeeds, a
new dag is produced and becomes the dag carried along by the analyzer.
In this way the information about which morphemes have been found is
propagated.

If an [ing] is encountered after a verb has been found, the following rule
builds the new dag. It first makes sure that the verb is infinitive (form:
inf) so that the suffix cannot be added onto the end of a past participle, for
instance, and then makes the tense of the new dag be pres_part for present
participle. The category of the new dag is verd, and the value for word is
the same as it was in the original verb’s dag. The form of the input verb ,
is a disjunction of inf (infinitive) with [tense: pres, pers: {1 2}], so the 1
unification succeeds. -

LIPS L NP R CIIRA S0 )

% verb — verb + ing
% 1 2 3 ‘
<2 cat> = verb

<3 lex> = ing

<2 form> = inf

<1 cat> = verb -"c
<1 word> = <2 word> 1
<1 form> = [tense: pres_part] .

The system also has a rule for combining an infinitive verb with the
nominalizing [er] morpheme, e.g., swim : swimmer. This rule, given below,
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also checks the form of the input verb to verify that it is infinitive. It makes
the resulting dag have category: noun, number: singular, and so on.

% noun — verb + er

% 1 2 3
<2 cal> = verb
<3 lex> = er

<2 form> = inf

<1 cat> = noun

<1 word> = <2 word>
<1 nbr> =sg

<1 pers> =3.

The noun thus formed behaves just the same as other nouns. In partic-
ular, a pluralizing [s] may be added, or a possessive [’s], or any other affix
that can be appended to a noun.

There are other rules in the grammar for handling adjective endings,
more verb endings, etc. Irregular forms are handled in a fairly reasonable
way. The irregular nouns are listed in the lexicon with form: firregular.
Other rules than the ones shown here refer to that feature; they prevent the
addition of plural morphemes to words that are already plural. Irregular
verbs are listed in the lexicon with an appropriate value for tense (not
unifiable with inf) so that the test for infinitiveness will fail when it should.
Irregular adjectives, e.g. good, better, best are dealt with in an analogous
manner.

4 Further Work

There are still some things that are not as straightforward as one would
like. In particular, consider the following example. Let us suppose as a
first approximation that one wanted to analyze the [un] prefix in English
as combining with adjectives to yield new ones, e.g., unfair, unclear, un-
safe. Suppose also that one wanted to be able to build past participles of
transitive verbs (passives) into adjectives, so that they could combine with

. .
lun), as in uncovered, unbuilt, unscen,

14




What we would need, would be a rule to combine an “empty” with an
[un] to make an [un] and then a rule to combine an [un] with a verb stem to
form a thingl, and finally a rule to combine a thingl with a past participle
marker to form a negative adjective. More rules would be needed for the
case where [un] combines with an adjective stem like [fair]. In addition,
rules would be needed for irregular passives, etc.

In short, without a more sophisticated control strategy, the grammar
would contain a fair amount of redundancy if one really attempted to handle
English morphology in its entirety. However, on a more positive note, the
rules do allow one to deal effectively and elegantly with a sufficient range
of phenomena to make it quite acceptable as, for instance, an interface
between a parser and its lexicon.

5 Conclusion

A morphological analyzer has been presented that is capable of interpreting
both orthographic and syntactic rules. This represents a substantial im-
provement over the method of incorporating morphological facts directly
into the code of an analyzer. The use of these rules leads to a powerful,
flexible morphological analyzer.
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Backwards Phonology
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Abstract

This paper constitutes an investigation into the generative capabilities of two-level phonol-
ogy with respect to unilevel generative phonological rules. Proponents of two-level phonology
have claimed, but not demonstrated, that two-level rules and grammars of two-level rules are
reversible and that grammars of unilevel rules are not. This paper makes “reversilility” explicit
and demonstrates by means of examples from Tunica and Klamath that two-level phonology does
have certain desirable cababilities that are not found in grammars of unilevel rules.

1 Introduction

Since Koskenniemi proposed using two-level phonology in computational morphological analysis in
1983, it has enjoyed considerable popularity [Koskenniemi, 1983]. It seems to be both expressively
powerful and computationally tractable. Two-level phonological grammars have been written for a
dozen or more languages, and written in a form that is interpretable by a program. One question
that arises fairly frequently however, at least in the context of discussion about two-level morphology,
is roughly, “Why don’t you use normal generative phonological rules?” i.e., rules of the type that
are taught in elementary linguistics classes. A slightly more positive way to ask the question is, “In
what way or ways does Koskenniemi's notion of two-level phonological rule represent a theoretical
advance?” This paper addresses that question by extending the notion of unilevel rule system to
cope with the same types of phenomena that two-level rule systems were designed to handle, and
then contrasting the two different systems.

At the annual meeting of the Linguistic Society of America (LSA) in 1981, Ron Kaplan and
Martin Kay presented a paper describing results about equivalences between what they call a cascade
of finite-state transducers and a set of normal, ordered phonological rules [Kaplan and Kay, 1981]. At
the LSA’s 1987 annual meeting, Lauri Karttunen gave a paper attempting to show that, when viewed
a certain way, Koskenniemi’s two-level rules possess a certain elegance that cannot be ascribed to
ordered sets of rules, namely their independence from order per se [Karttunen, 1986].

In spite of Karttunen’s paper and Koskenniemi’s, and perhaps to some extent because of Kaplan
and Kay’s paper, it is still not obvious to people who are interested in this field what, if anything,
two-level phonology offers that cannot already be found in the linguistic literature under the heading
of generative phonology. Koskenniemi has made some claims about grammars of two-level rules being
reversible whereas sets of ordered rules are not. However these claims are not backed up by solid
argumentation, and the Kaplan and Kay paper seems to argue otherwise.

From a linguistic point of view, there may be good reason to think that people use two different
sets of rules or procedures for generation and recognition. From a computational point of view,
however, it is interesting to ask, “What needs to be done in order to use the same grammar for
generation and recognition; does a single reversible grammar lead to more or less work in terms of
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writing the grammar and in terms of run-time speed; and finally, does a reversible grammar lead to a
more or less elegant presentation of the phenomena?” Another reason for asking about reversibility
is to make a comparison of these two rule formalisms possible. The main novelty in Koskenniemi’s
system is the reversibility of the system, so we may well question what would be necessary to view
unilevel rules as reversible.

In short, there are very good reasons for being interest.d in properties of reversibility, and these
properties will serve as the basis for this paper’s comparison between the two different types of
phonological rule formalisms mentioned above. The discussion here will focus more on concrete
examples of generative capacity, and much less on issues of what is involved in building an acceptable
linguistic theory. [For more on global concerns of linguistic theory, see, for example, Eliasson, 1985).
The questions addressed here will be, “What assumptions need to be made to use a grammar of
unilevel generative rules to do recognition?” and “How does the resulting combination of grammar
plus rules-of-interpretation compare with a two-level style grammar?”

2 Reversibility of Unilevel Rule Systems

The question of grammar reversibility involves two interrelated but separate issues. The first is
whether the notational or descriptive devices of a grammar are in general amenable to being reversed,
and what is involved in the reversal. The second is whether individual accounts of the phenomena
of a particular language are reversible, and, again, if so, what is involved in the reversal.

The remarks in this paper are mainly concerned with the general paradigm of generative phonol-
ogy, in particular, segmental phonology as is described in elementary texts - e.g., Kenstowicz and
Kisseberth (1979), Halle and Clements (1983), Schane (1973), Mohanan (1986) — rather than any
particular linguistic theory. The main techniques discussed are rewrite rules, orderings of rules, fea-
tures, and variables for feature values (e.g., the alpha and beta of assimilation rules). The problems
of suprasegmental phonology will be left for another paper.

3 Backwards Rules

I shall start by making explicit what it means to apply a phonological rule in the backwards direction.
The basic idea is extremely straightforward and will be, I think, uncontroversial.

a—b/a_p (1)

A rule like the one in (1) transforms the string /aafB/ into the string /abB/. Here a and J are strings

of characters over some alphabet, e.g., the phonemes of a language. I take it that such a rule can

also be interpreted as mapping the string /abB/ into the string /aaf/, when it is applied backwards.
To take a more linguistically realistic rule, let us consider the simple rule in (2).

n—9/_g (2)

From a recognition point of view, this means that if we have the sequence [ng] in a surface form of a
word, then the underlying sequence could be /n g/. In slightly more general terms, we look for the
segment on the right side of the arrow to see whether it appears in the context given in the rule. If
so, we can transform that segment into the segment on the left side of the arrow.




4 Obligatory Versus Optional

The rule in (2) says nothing about whether it is optional or obligatory in the backwards direction.
Optionality in the backwards direction is entirely independent of optionality in the forward direction.
In English the rule in (2) seems to be obligatory in the reverse direction, i.e., every surface [p] seems to
come from an underlying /n/. In the forward direction, it does not always apply. This is demonstrated
by the pair: co[p]gress vs. co[n]gressional.!

In a language that had phonemic /y/ and /n/, the rule might be obligatory in the forward
direction and optional in the backward direction.? That is, if [y] on the surface can come from either
/n/ or /n/, then the rule would necessarily be optional in the reverse direction.

The point here then is that one needs to specify in the grammar not just whether a rule is
obligatory or optional in the forward direction, but also whether it is obligatory or optional in the
backwards direction.

5 Reversibility and Rule Ordering

The previous example describes the case of a single rule and points out that attention must be paid to
whether a rule is optional or obligatory in the backwards direction as well as in the forward direction.
The following case of rule ordering shows that there is more to the issue of reversibility than the
distinction between “optional” and “obligatory.”

There is a beautiful example in the Problem Book in Phonology by Halle and Clements (1983)
of the elegance of rule ordering. In this section I will show that the device of ordered rules is not
generally reversible using their example from Klamath.

The data from Klamath together with five rules are taken from Halle and Clements (1983), who
in turn give their source as being Klamath Grammar by Barker (1964):

nl— 1l

/honli:na/ — holli:na ‘flies along the bank’
nl— lh

[honly/ — holhi ‘flies into’

nl’ = 17

[honl’a : ’a/ — hol?a : 'a ‘flies into the fire’

1= Ih

/pa:lla/ — pa:lha ‘dries on’
-1

Jyalyall’if — yalyal?d ‘clear’

Halle and Clements also say that Barker assumes that all phonological rules are unordered and
that all rules apply simultaneously to underlying representations to derive surface representations.®
They then give the following exercise: “Show how Barker’s set of rules can be simplificd by abandoning

!Mohanan (1986) p. 151.

2That obligatory rules need not be obligatory when applied in the backwards direction has been pointed out by Ron
Kaplan (in a course at the LSA Summer Institute at Stanford, 1987)

3Halle and Clements (1983) p. 113
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these [Barker's) assumptions and assuming that phonological rules apply in order, each rule applying
to the output of the preceding rule in the list of ordered rules. Write the rules sufficient to describe
the above data, and state the order in which they apply.”*

The rules that one is supposed to arrive at are roughly these:

l’
n—1l/_¢1 (3)
]
l—h/1_ (4)
=9 /1_ (5)

g to impo (4) and (5), and that Rules (4) and

Tha ardart

. .
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(5) are unordered with respect to each other. The reader can verify that the rules give the correct
results when applied in the forward (generative) direction. In the backwards (recognition) direction,
the derivations for the five forms are as given below. The rule numbers are superscripted with a
minus one to indicate that these rules are inverses of the rules listed above.

that ’D“}c (3) applies hafarn ulsa

vV AL A

holli:na — honli:na
Rule 8 !
holhi — holli — honli®
Rule 4! Rule 31
hol?a:l’a - holl’a:l’a — honl’a:l’a
Rule 5! Rule 81
pa:lha - pa:lla - *pa:nla
Rule 41 Rule 87!
yalyal?i - yalyall’i — *yalyanl’i
Rule 5! Rule 871

What we see here is that in order to recognize the form holli:na correctly, Rule (3) must be
obligatory in the reverse direction. However, in order to get the correct results for the forms pa:lha
and yalyal?, Rule (3) may not apply at all; i.e, it is not correct to say that the results can be
obtained by correctly stipulating whether a rule is optional or obligatory. Rule (3) works well in
the forward direction, but gives incorrect results when applied in the backwards direction. In short,
the elegant set of ordered rules makes incorrect predictions about recognition. In contrast, Barker’s
original unordered set of rules correctly describes the data regardless of direction of application (i.e.,

generation vs. recognition).

4Ibid.
5This is correct modulo the change of i back into y which Halle and Clements assure us is not part of the issue at

hand. For purposes of discussing reversibility it merely provides more support for the argument that unilevel rules are

not easily reversed.
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This is a result about ordering of rules. I have not shown that a set of ordered rules is never
reversibie, only that such a set is not necessarily reversible.

6 Variables and Deletion

The previous example used extremely plain rules: no features, no alphas or betas, and no deletion.
The next example I shall present involves some of these commonly used devices. I shall try to make
clear when they can be used in a reversible way (though they need not be), and when they just do
not seem amenable to reversal. Before discussing reversal further, I will present the data and the set
of rules for describing the data in the generative framework. The data and analysis were taken from
Kenstowicz and Kisseberth (1979).6 Their data come from the language Tunica.
The rules and data deal with two phenomena: vowel assimilation and syncope. The

below, are ordered, with (6) occurring before (7). [Note on transcription: the question mark repre-
sents glottal stop.)

rulac civon
& \“NI" v .

+ syl
+ syll a back . 0
[+ low]—)[ﬂ round}/ a  back o= (6)
B round

+ syllabic .
[— stress ] 4 / S (7)

Rule (7) says (or was meant to say) that unstressed vowels are deleted before glottal stops. Rule
(6) was intended to mean that /a/ assimilates to [€] or [»] when it is separated by a glottal stop from
a preceding /i/ or /u/ respectively.

In addition to the two rules just given, Kenstowicz and Kisseberth mention but do not formulate
a rule of Right Destressing that follows both rules. The rules are in accord with the following data,
also taken from Kenstowicz and Kisseberth. The following forms show assimilation.

To verb He verbs She verbs She is v-ing  Gloss

’

po pofuhki  pofoki pohk?aki look
pi pi?ubki  pi?eki pihk%aki  emerge
yd yd?uhki  yd®aki ydhk?aki do
éu Gifubki  édPoki éuhk?aki take

These forms show syncope and assimilation.

To verb He verbs She verbs Sheis v-ing  Gloss

hdra  hdr?uhki  hdrfaki  hdrahk?dki sing
hipu  hipPuhki  hipoki  hipuhk?dki  dance
ndsi  ndsPuhki ndsfeki  ndsihk?dki lead s. o.

p. 292, They cite their source as Haas (1940).
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As a sample derivation, Kenstowicz and Kisseberth give the following:

/ndsi?dki/
] Vowel Assimilation
ndsi?éki
l Syncope
nds?éki
! Right Destressing
[nds?eki]

For the purpose of going through a backwards derivation, I will make explicit a few assumptions.
First, I assume that the Vowel Assimilation rule is really as in (8) below.

Vowel Assimilation (Modified)

I syll
+ syl +  low + sl
. . a back | ?_ (8)
+ low a back
B round A round

It is a matter of style that the features [ + syll, + low] were left out of the feature bundle to the
right of the arrow in Kenstowicz and Kisseberth’s formulation of the rule. Although it is considered
good style to do so, the omission of such information makes it unclear how the rule should be applied
for recognition. Hence I have included this information in Rule (8).7

Another assumption I will make is that the unformulated rule of Right Destressing lends nothing
to my argument here. I assume that the rule when applied in the reverse direction puts stress on the
appropriate syllable and nowhere else.®

Finally, I will spell out what I consider to be a reasonable interpretation of how to use the rules
for recognition. When interpreted backwards, Rule (8) says that a low vowel that is separated by
a glottal stop from another vowel with which it agrees in backness and rounding might have come
from seme other low vowel. The syncope rule in (7), when interpreted backwards, says to insert an
unstressed vowel before glottal stops. As was pointed out before, there is no way to deduce whether
these rules are obligatory or optional in the reverse direction. Indeed, it is not at all obvious what
“obligatory” even means in terms of the assimilation rule taken backwards.

"Presumably Kenstowicz and Kisseberth want to treat [€] as being [+ low] to keep the rule simple and still contrast
[¢] with [i). If they treat [¢] as [- low] and [0] as [+ low}, the assimilation rule becomes messier. This assumption about
fe] becomes important later.

%1t seems clear that segmental accounts will fall short when dealing with suprasegmental issues like stress. The goal
of this paper is to contrast two different ways of doing segmental phonology. Both would presumably benefit from
autosegmental extensions.
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Given these assumptions, we can now produce a reverse derivation for [na’s?eki).

nasi?eki
nasi?aki

nasi?ski

-nase?éki
nziés?éki<nééa?éki

ndse?3ki

nasi?éki

nasa?éki
——n487éki nasa?éki

[nds?eki]
nasu?éki
naso?€ki
nas?éki

First Reverse Destiessing is applied to give nds?¢ki. Then Reverse Syncope applies to insert
various hypothesized vowels in forms in the column to the right. Finally, the rightmost column
shows the results of applying the reverse of the Assimilation rule to the preceding forms. A box is
drawn around the correct underlying form. )

What we end up with are 14 or 15 possible forms - clearly too many. One problem is that the
assimilation rule in (G) and (8) was formulated with only generation in mind. If we change it slightly,
adding the features {+back, -round] to the bundle to the left of the arrow as in (9),

+ syl +  syll

+ low |+ low + ; yli. 0 (9)
+  back o back 2 ac P b -

- round B round roun

we have a better rule. Now it says that [e] and [1], when they result from assimilation, come
specifically from /a/. This makes the results better. The previous version of the rule just mentions
low vowels, of which there are three that we know about: €, a, 2.9 When we specify that of these
three we always want /a/, we have a more accurate grammar. Now instead of recognizing 14 or 15
possible underlying forms for the word nd$?eki, the grammar only recognizes ten.

There is a very simple but subtle point at issue here, having to do with writing reversible rules.
The grammar writers knew when they were formulating the assimilation rule that [¢] and [»] were
never going to come up as input to the rule because these two vowels do not exist in the underlying
representations. They also knew that there were no other rules applying before the assimilation
rule which would introduce [¢] or [5]. Hence they did not need to distinguish between the various
possibilities for low vowels. In short, the grammar writers made use of fairly subtle information to
write a rule which was as pared down as possible. Leaving out the features in (9), as Kenstowicz
and Kisseberth do, looks elegant, but turns the two-way rule into a one-way rule that works only
for generation. This is a case where leaving out some features obscures the content of the rule and
prevents one from correctly applying the rule for recognition. In short, this is a case where the rule
could have been written in a way that was reversible, or at ieast more reversible, but in the name of
“brevity” or “elegance” it was not.

The vowels [e] and [] also provide complications for the reversal of the vowel deletion rule. We
have no reason to believe from the data given that the deleted vowel is ever [€] or [5]. However there
is not a good way of saying, using standard rule writing techniques, that any vowel that is introduced

®As mentioned in an earlier footnote, Kenstowicz and Kisseberth secm to treat [] as [+ low).
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in the recognition must be one of the underlying ones. In ordered sets of rules, there is not typically
a distinction made between the segments that can occur as input to a rule and segments that can
only occur as output. One of the unhappy consequences is that {¢] and [o] have the same status with
respect to the rules of Tunica as the other, underlying, vowels in the language.

An even more serious problem revealed by this Tunica example is the inability of the standard
generative rule-writing mechanism to specify the interrelationship between rules. The rules apply
based only on strings of characters they get as input, not on what rules came before. In the case at
hand, however, we would like to be able to relate the two rules to one another. What we would really
like to be able to say is that when in the course of recognition it becomes necessary to reintroduce
the deleted vowel, if there is an [¢] on the surface the reintroduced vowel must be [i], and if there is
an [o] the reintroduced vowel must be [u] or [0]. This is a problem with alpha (assimilation) rules.
There is no way to say that if there is an [¢] or [5] on the surface, then the reverse of the syncope
rule must apply, when doing recognition, and, furthermore, that it must apply in such a way that
the assimilation rule can then apply (again in reverse) and, lastly, that the reverse of the assimilation
rule must then apply. In simpler terms, there is no way to say that if there is an [€] (respectively [5])
on the surface, then it must be preceded by an underlying /i/ (respectively /u/ or /o/).

When dealing with cases of deletion, and mergers in general, it is not generally possible to write
a set of rules that maps surface forms unambiguously to a single underlying form. In the case of
the Tunica vowel deletion, there are occurrences of surface forms in which the phonological rules
cannot tell which vowel to reintroduce when doing recognition. There are, however, cases where it is
clear which vowel should be reintroduced, e.g., the case above, and in these cases, both the grammar
formalism and the individual analysis should be able to express this information. The mechanism
of using alphas and betas, for instance in assimilation rules, does not appear to have this expressive
capacity.

The problem could be ameliorated by writing less elegant rules. For instance, the syncope rule
in (7) could be written as in (10).

[+syllabic, +underlying, —stress) = @ [ _ ¢ (10)

This would ensure that the nonunderlying vowels [€] and [5] would not be introduced when applying
the rules in the reverse direction. It still would not be as restrictive as one could be using two-level
rules.

One could argue that all one needs to do is use the lexicon to weed out the forms that are wrong.
Yet one would not consider suggesting the same thing if a grammar generated too many surface
forms, although one could imagine using a surface lexicon as a filter. The technique of using the
lexicon to weed out the forms that are wrong is a perfectly good efficiency measure, but has no
bearing on the question of how well a formalism maps underlying forms to surface forms and vice
versa.

In the rest of this paper I will present and discuss two-level accounts of phonological phenomena
described earlier, and show the merits of such an approach.

7 Two-level Rules

In the two-level accounts that have been proposed [Koskenniemi 1983, Karttunen and Wittenburg
1983, Bear 1986, etc.], there are two alphabets of segments, underlying and surface. There are
constraint-rules about which underlying segments may be realized as which surface segments, and
vice versa, based on context. The rules’ contexts are strings of pairs of segments, each underlying




segment paired with a surface segment. Deletions and insertions are handled by pairing a segment
with a null segment. What is crucial about the rules is that each element of a context is actually
a pair of segments, an underlying and a surface segment. The ability to refer to both surface and
underlying contexts in a rule allows the rule writer to describe phenomena that are handled with
ordered rules in the unilevel approach.

The other powerful device in two-level phonology is an explicit listing of the two alphabets and
the feasible mappings between them. These mappings are simply pairs of segments, one surface
segment paired with one underlying segment. This list of feasible pairs typically contains many pairs
of identical segments such as (a,a) or (b,b), representing that there are segments that are the same
underlyingly as on the surface. The list also contains pairs representing change. For the Tunica
example, (a,€) and (a,9) would be in the list, but (a,u) and (i,u) for example would not be. The ]
feasible pairs can be thought of as machinery for generating strings of pairs of segments that the J
rules either accept or reject. An accepted string of segment pairs constitutes a mapping from an
underlying form to a surface form and from surface to underlying form.

8 Rule Ordering

In a paper presented at the 1986 annual meeting of he Linguistic Society of America, Lauri Karttunen
proposed this solution for the Klamath data above:!?

= ]
n=l/_< b= (11)
[:=
l—h/=1_ (12)
UV ?/=:d_ (13)

The contexts of the rules should be read as follows. Each pair separated by a colon is a lexical
segment followed by a surface segment. The equals sign is a place holder used when the rule writer
does not want to make any commitment about what some segment must be. So, for instance, I':= is
an underlying /1’/ paired with some surface segment, and the rule doesn’t care which. Similarly, =:1
is a way of stipulating that there is a surface [l] in the context, and we don’t care, for the purposes
of this rule, which underlying segment it corresponds to. The right arrow, —, is being used in the
way described in Bear [1986, 1988 a,b]. For example, Rule (11) should be construed as allowing the
pair of segments n:l (underlying n corresponding to surface 1) to occur in the rule’s environment,
while disallowing the pair n:n. Although the right arrow rule is reminiscent of the arrow in unilevel
rules, this interpretation is nondirectional. There are two other kinds of constraints to allow one to
deal effectively with the asymmetries involved in pairing underlying, ‘orms with surface forms. In
Bear [1986, 1988] the two other kinds of constraints are (1) to allow a pair of segments to occur in
a certain context without disallowing the default pair (e.g. n:n in the previous example is a default
pair), and (2) to disallow a pair in some context without allowing some other pair. For example, the
rule types in (14) and (15) are allowed.

T,

a:b allowed here: o _ 8 (14) ?
a:b disallowed here: a _ (15)

107:m using an amalgamation of notations from Koskenniemi, Karttunen and Wittenburg, and Bear.




In Koskenniemi [1983, 1984] the constraints are slightly different, but have roughly the same
functionality. In Koskenniemi's system, one may stipulate that if a lexical segment occurs in some
context, then it must correspond to some particular surface segment. One may also stipulate that a
certain lexical/surface segment pair may only occur in a certain environment.

Karttunen [1986] pointed out that the three rules in (11), (12), and (13) work correctly to give
the right results when generating surface forms from underlying forms, and made the point that they
do so without recourse to the device of rule ordering. Another point he could have made about these
rules which I will make here is that they are just as effective in producing the right underlying forms
from surface forms. There is not the problem of multiple intermediate levels of representation, where
one is faced with the choice of whether to continue applying [reversed] rules or to stop and call the
form a result.

9 Combining Assimilation With Deletion

One solution for the Tunica data is given below.!!

a—o/{w=|o=}7?_ (16)
a—¢e/iz=%_ (17
[Vowel, - stress] — & / _ ? where Vowel € {i,a,0,u} (18)

Rules (16) and (17) say that /a/ assimilates to the underlying vowel preceding it, with a glottal
stop intervening. One other crucial element of the two-level way of doing things is that in addition
to rules, a grammar contains a list of feasible segment pairs. For this Tunica case, there presumably
would not be a feasible pair /¢/:[€], nor would there be /a/:[o] since [¢] and [5) do not seem to
occur as underlying vowels. Hence the surface [¢] in our example word [nds?ki] would be forced
unambiguously to correspond to an underlying /a/. This is exactly what we want.

Rule (18) specifies that unstressed vowels are deleted when they occur before a glottal stop. The
rule makes clear that only the four vowels i, a, 0, and u are deleted, and also that when doing
recognition, only those vowels are allowed to be inserted.

These rules make it clear that the underlying form for [nd$?eki] must be /ndsi?dki/ modulo details
of the rule of Right Destressing.

10 Analysis by Synthesis

There is one system for doing computational morphology, specifically for recognizing Turkish, which
uses unilevel rules [Hankamer, 1986}. The system first invokes an ad hoc procedure to find the first
heavy syllable of a Turkish word. This substring and perhaps a few carefully constructed variants of
it are considered as possible stems for the word. Next, based on the morphotactic information about
the stem found in the lexicon, assuming one of the possible stems is in the lexicon, several possible
suffixes are proposed as possible. A set of phonological rules is applied to the hypothesized underlying
forms consisting of stem+suffix. Whichever of them results in a string that matches the input surface
form is considered to be right. The process is repeated until the entire string is analyzed.

Since Turkish is exclusively suffixing and has strong phonotactic constraints on what can be a
stem, it is possible to write an ad hoc routine to pick the stem out. It remains to be seen how this

11]¢ is a common abbreviatory convention that any pair of idendical segments, e.g., a:a, can be written simply as a
single segment, e.g., a. So, in these rules the glottal stop character represents the pair: ?:7.
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method of analysis can be made general enough to be applied successfullv to other languages. While
Hankamer's paper is interesting in its own right, it would be a mistake tc construe it as demonstrating
anything very general about reversibility of unilevel rule systems.

11 Conclusion

The question has been asked, “What is so good about Koskenniemi’s two-level phonology?” The
answer is that it allows one to write reversible, nonprocedural descriptions of phonological phenomena
with much more accuracy than does the conventional unilevel formalism. The point I have stressed
here is the reversibility. From a computational point of view, this represents a step forward. There
are no published accounts of reversible grammars written in a unilevel formalism so far as I know
and there are many written in two-level rules. Koskenniemi’s proposal was made with computation
in mind as opposed to linguistic theory. It may, in the long run, have an impact on linguistic theory.
It definitely has had a large impact on computational morphology.
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Two Principles of Parse Preference

Jerry R. Hobbs and John Bear
Artificial Intelligence Center
SRI International

1 Introduction

The DIALOGIC system for syntactic analysis and semantic translation has been under
development for over ten years, and during that time it has been used in a number of
domains in both database interface and message-processing applications. In addition, it
has been tested on a number of sentences of linguistic interest. Built into the system
are facilities for ranking parses according to syntactic and selectional considerations, and
over the years, as various kinds of ambiguity have become apparent, heuristics have been
devised for choosing the preferred parses. Our aim in this paper is first to present a
compendium of many of these heuristics and secondly to propose two principles that seem
to underlie the heuristics. The first will be useful to researchers engaged in building
grammars of similarly broad coverage. The second is of psychological interest and may
be a guide for estimating parse preferenr ‘or newly discovered ambiguities for which we
lack the experience to decide among on & ..aore empirical basis.

The mechanism for implementing parse preference heuristics is quite simple. Terminal
nodes of a parse tree acquire a score (usually 0) from the lexical entry for the word sense.
When a nonterminal node of a parse tree is constructed, it is given an initial score which
is the sum of the scores of its child nodes. Various conditions are checked during the
construction of the node and, as a result, a score of 20, 10, 3, -3, -10, or -20 may be added
to the initial score. The score of the parse is the score of its root node. The parses of
ambiguous sentences are ranked according to their scores. Although simple, this method
has been very successful. In this paper, however, rather than describe the heuristics in
terms this detailed, we will describe them in terms of the preferences among the alternate
structures that motivated our scoring schemes.

While these heuristics have arisen primarily through cur everyday experience with the
system, we have done small empirical studies by hand on some of the ambiguities, using
several different kinds of text, including some from the Brown corpus and some transcripts
of spoken dialogue. We have counted the number of occurrences of potentially ambiguous
constructions that were in accord with our claims, and the number of occurrences that
were not, Some of the constructions were impossible to find, not only because they occur
so rarely but also because many are very difficult for anyone except a dumb parser to
spot. But in every case where we found examples, the numbers supported our claims. We
present our preliminary findings below for those cases where we have begun to accumulate
a nontrivial number of examples.
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2 Brief Review of the Literature

Most previous work on parse preferences has concerned itself with the most notorious of
the ambiguities—the attachment ambiguities of postmodifiers. Among the first linguists
to address this problem was Kimball (1973). He proposed several processing principles in
an attempt to account for why certain readings of ambiguous sentences were more salient
than others. Two of these principles were Right Association and Closure.

In the late 1970s and early 1980s there was a great deal of work among linguists and
psycholinguists (e.g. Frazier and Fodor, 1979; Wanner and Maratsos, 1978; Marcus, 1979;
Church, 1980; Ford, Bresnan, and Kaplan, 1982) attempting to refine Kimball’s initial
analysis of syntactic bias and proposing their own principles govering attachment. Frazier
and Fodor proposed the principles of Minimal Attachment and Local Association. Church
proposed the A-over-A Early Closure Principle; and Ford, Bresnan and Kaplan introduced
the notions of Lexical Preference and Final Arguments.

The two ideas that dominated their hypotheses and discussions were Right Association,
which says roughiy that postmodifiers prefer to be attached to the nearest previous possible
head, and a stronger principle stipulating that argumexnt interpretations are favored over
adjunct interpretations. This latter principle is implied by Frazier and Fodor’s Minimal
Attachment and also by Ford, Bresnan and Kaplan’s Lexical Preference.

In recent computational linguistics, Shieber and Pereira (Shieber, 1983; Pereira, 1985)
proposed a shift-reduce parser for parsing English, and showed that Right Association
was equivalent to preferring shifts over reductions, and that Minimal Attachment was
equivalent to favoring the longest possible reduction at each point.

More recently, there have been debates, for example, between Schubert (1984, 1986)
and Wilks et al. (1985), about the interaction of syntax with semantics and the role of
semantics in disambiguating the classical ambiguities.

We take it for granted that, psychologically, syntax, semantics, and pragmatics interact
very tightly to achieve disambiguation. In fact, in other work (Hobbs et al., 1988), we
have proposed an integrated framework for natural language processing that provides for
this tight interaction. However, in this paper, we are considering only syntactic factors. In
the semantically and pragmatically unsophisticated systems of today, these are the most
easily wacessible factors, and even in more sophisticated systems, there will be examples
that semantic and pragmatic factors alone will fail to disambiguate.

The two principles we propose may be viewed as generalizations of Minimal Attachment
and Right Association.

3 Most Restrictive Context

The first principle might be called the Most Restrictive Context principle. It can be stated
as follows:

Where a constituent can be placed in two different structures, favor the
structure that places greater constraints on allowable constituents.

For example, in




John looked for Mary.

“for Mary” can be interpreted as an adverbial signaling the beneficiary of the action or as
a complement of the verb “look”. Since virtually any verb phrase can take an adverbial
whereas only a very few verbs can take a “for” prepositional phrase as its complement,
the latter interpretation has the most restrictive context and therefore is favored.

A large number of preferences among ambiguities can be subsumed under this principle.
They are enumerated below.

1. As in the above example, favor argument over adverbial intepretations for post-
modifying prepositional phrases where possible. Thus, whereas in

John cooked for Mary.

“for Mary” is necessarily an adverbial, in “John looked for Mary” it is taken as a com-
plement. Subsumable under this heuristic is the preference of “by” phrases after passives
to indicate the agent rather than a location. This heuristic, together with the next type,
constitutes the traditional Minimal Attachment principle. This heuristic is very strong;
of 47 occurrences examined, all were in accord with the heuristic.

2. Favor arguments over mere modifiers. Thus, in

John bought a book from Mary.

the favored interpretation is “bought from Mary” rather than “book from Mary”. Where
the head noun is also subcategorized for the preposition, as in,

John sold a ticket to the theater.

this principle fails to decide among the readings, and the second principle, described in
the next section, becomes decisive.

This principle was surprisingly strong, but perhaps for illegitimate reasons. Of 75
potential ambiguities, all but one were in accord with the heuristic. The one exception
was

HDTYV provides television images with finer detail than current systems.

and even this is a close call. However, it is often very uncertain whether we should say
verbs, nouns, and adjectives subcategorize for a certain preposition. For example, does
“discussion” subcategorize for “with” and “about”? We are likely to say so when it yields
the right parse and not to notice the possibility when it would yield the wrong parse. So
our results here may not be completely unbiased.

3. Favor complement interpretations of infinitives over purpose adverbial interpreta-
tions. In

John wants his driver to go to Los Angeles.

the preferred interpretation has only the driver and not John going to Los Angeles.

Of 44 examples of potential ambiguities of this sort that we found, 41 were complements
and only 3 were purpose adverbials. Even these three could have been eliminated with
the simplest selectional restrictions. One example was the following
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He pushed aside other business to devote all his time to this issue.
which could have been parsed analogously to
He pushed strongly all the young researchers to publish papers on their work.

A particularly intriguing example, remembering that “provide” can be ditransitive, is the
following;:

That is weaker than what the Bush administration needs to provide the nec-
essary tax revenues.

4. Favor the attachment of temporal prepositional phrases to verbs or event nouns. In
the preferred reading of

John saw the President during the campaign.

the seeing was during the campaign, since “President” is not an event noun. In the
preferred reading of

The historian described the demonstrations during Gorbachev’s visit.

the demonstrations are during the visit. This case can be considered an example of
Minimal Attachment if we assume that all verbs and event nouns have potential temporal
arguments. Of 74 examples examined, 66 were in accord with this heuristic. Two that did
not involved the phrase “business since August 1”.

5. Favor adverbial over object interpretations of temporal and measure noun phrases.
Thus, in

John won one day in Hawaii.
“one day in Hawaii” is preferentially the time John won and not his prize. In
John walked 10 miles.

“10 miles” is a measure of how far he walked, not what he walked. This is an example
of Most Restrictive Context because noun phrases, based on syntactic criteria alone, can
always be the object of a transitive verb, whereas only temporal and measure noun phrases
can function as adverbials. This case is interesting because it runs counter to Minimal
Attachment. Here arguments are disfavored.

Of fifteen examples we found of such ambiguities, eleven agreed with the heuristic.
The reason for the large percentage of examples that did not is that sports articles were
among those examined, and they contained sentences like

Smith gained 1240 yards last season.

This illustrates the hidden dangers in genre selection.
6. Favor temporal nouns as adverbials over compound nominal heads. The latter
interpretation is possible, as seen in




Is this a CSLI Thursday?
But the preferred reading is the temporal one that is most natural in
I saw the man Thursday.
7. Favor “that” as a complementizer rather than as a determiner. Thus, in
I know that sugar is expensive.

we are probably not referring to “that sugar”. This is a case of Most Restrictive Context
because the determiner “that” can appear in any noun phrase, whereas the complementizer
“that” can occur only after a small number of verbs. This is a heuristic we suspect everyone
who has built a moderately large grammar has implemented, because of the frequency of
the ambiguity.

8. An initial “there” is interpreted as an existential, where possible, rather than as a
locative. We interpret

There is a man in the room.

as an existential declarative sentence, rather than as an utterance with an initial locative.
Locatives can occur virtually anyplace, whereas the existential “there” can occur in only
a very small range of contexts. Of 30 occurrences examined, 29 were in accord with the
heuristic. The one exception was

There, in the midst of all those casinos, is Trump’s Taj Mahal.
9. Favor predeterminers over separate noun phrases. In
Send all the money.

the reading that treats “all the” as a complex determiner is favored over the one that
treats “all” as a separate complete noun phrase in indirect object position. There are
very many fewer loci for predeterminers than for noun phrases, and hence this is also an
example of Most Restrictive Context.

10. Favor preprepositional lexical adverbs over separate adverbials. Thus, in

John did the job precisely on time.

we favor “precisely” modifying “on time” rather than “did the job”. Very many fewer
adverbs can function as preprepositional modifiers than can function as verbal or sentential
adverbs. Of 28 occurrences examined, all but one were in accord with the heuristic. The
one was

Who is going to type this all for you?

11. Group numbers with prenominal unit nouns but not with other prenominal nouns.
For example, 10 mile runs” are taken to be an indeterminate number of runs of 10 miles
each rather than as exactly 10 runs of a mile each. Other nouns can function the same
way as unit nouns, as in “2 car garages”, but it is vastly more common to have the number
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attached to the head noun instead, as in “5 wine glasses”. Virtually any noun can appear
as a prenominal noun, whereas only unit nouns can appear in the adjectival “10-mile”
construction. Hence, for unit nouns this is the most restrictive context. While other
nouns can sometimes occur in this context, it is only through a reinterpretation as a unit
noun, as in “2 car garages”.

12. Disfavor headless structures. Headless structures impose no constraints, and are
therefore never the most restrictive context, and thus are the least favored in cases of
ambiguity. An example of this case is the sentence

John knows the best man wins.
which we interpret as a concise form of
John knows (that) the best man wins.
rather than as a concise form of

John knows the best (thing that) man wins ().

4 Attach Low and Parallel

The second principle might be called the Attach Low and Parallel principle. It may be
stated as follows:

Attach constituents as low as possible, and in parallel with other con-
stituents if possible.

The cases subsumed by this principle are quite heterogeneous.

1. Where not overridden by the Most Restrictive Context principle, favor attaching
postmodifiers to the closest possible site, skipping over proper nouns. Thus, where neither
the verb nor the noun is subcategorized for the preposition, as in

John phoned a man in Chicago.
or where both the verb and the noun are subcategorized for the preposition, as in
John was given a book by a famous professor.

the noun is favored as the attachment point, since that is the lowest possible attachment
point in the parse tree. This case is just the traditional Right Association.

The subcase of prepositional phrases with “of” is significant enough to be mentioned
separately. We might say that every noun is subcategorized for “of” and that therefore
“of” prepositiona” , urases are nearly always attached to the immediately preceding word.
Cf 250 occurrences exarrined, 248 satisfied this heuristic, and of the other two

—aaoa Y22

Since the first reports broke of the CIA’s activities, ...

He ordered the destruction two years ago of some records.
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the second would not admit an incorrect attachment in any case.

We examined 148 instances of this case not involving “of”, temporal prepositional
phrases, or prepositions that are subcategorized for by possible attachment points. Of
these, 116 were in accord with the heuristic and 32 were not. An example where this
heuristic failed was

They abandoned hunting for food production.

For a significant number of examples (34), it did not matter where the attachment was
made. For instance, in

John made coffee for Mary.

both the coffee and the making are for Mary. We counted these cases as being in accord
with the heuristic, since the heuristic would yield a correct interpretation.

This is perhaps the place to present results on two very simple algorithms. The first is
to attach prepositional phrases to the closest possible attachment point, regardless of other
considerations. Of 251 occurrences examined, 125 attached to the nearest possibility, 109
to the second nearest, 14 to the third, and 3 to the fourth, fifth, or sixth. This algorithm
is not especially recommended.

The second algorithm is to attach to the nearest possible attachment point that sub-
categorizes for the preposition, if there is such, assuming verbs and event nouns to subcat-
egorize for temporal prepositional phrases, and otherwise to attach to the nearest possible
attachment point. This is essentially a summary of our heuristics for prepositional phrases.
Of 297 occurrences examined, this yielded the right answer on 256 and the wrong one on
41.

2. Favor preprepositional readings of measure phrases over readings as separate ad-
verbials. Thus, in

John walked 10 miles into the forest.

we preferentially take “10 miles” as modifying “into the forest” rather than “walked”, so
that John is now 10 miles from the edge of the forest, rather than merely somewhere in
the forest but 10 miles from his starting point. Since the preposition occurs lower in the
parse tree than the verb, this is an example of Attach Low and Parallel. Note that this is
a kind of “Left Association”.

3. Coordinate “both” with “and”, if possible, rather than treating it as a separate
determiner. In

John likes both intelligent and attractive women.

the interpretation in which there are exactly two women who are intelligent and attractive
is disfavored. Associating “both” with the coordinated adjectives rather than attaching it
to the head noun is attaching it lower in the parse tree.

4. Distribute prenominal nouns over conjoined head nouns. In “oil sample and filter”,
we mean “oil sample and oil filter”. A principle of Attach Low would not seem to be
decisive in this case. Would it mean that we attach “oil” low by attaching it to “sample”




or that we attach “and filter” low by attaching it to “sample”. It is because of examples
like this (and the next case) that we propose the principle Attach Low and Parallel. We
favor the reading that captures the parallelism of the two head nouns.

5. Distribute determiners and noun complements over conjoined head nouns. In “the
salt and pepper on the table”, we treat “salt” and “pepper” as conjoined, rather than “the
salt” and “pepper on the table”. As in the previous case, where we have a choice of what
to attach low, we favor attaching parallel elements low.

6. Favor attaching adjectives to head nouns rather than prenominal nouns. We take
“red boat house” to refer to a boat house that is red, rather than to a house for red boats.
Like all of our principles, this preference can be overridden by semantics or convention,
as in “high stress job”. Here again we could interpret Attach Low as telling us to attach
“red” to “boat” or to attach “boat” to “house”. Attach Low and Paralle] tells us to favor
the latter.

5 Interaction and Overriding

There will of course be many examples where both of our principles apply. In the cases that
occur with some frequency, in particular, the prepositional phrase attachment ambiguities,
it seems that the Most Restrictive Context principle dominates Attach Low and Parallel.
It is unclear what the interactions between these two principles should be, more generally.

These principles can be overridden by more than just semantics and pragmatics. Com-
mas in written discourse and pauses in spoken discourse (see Bear and Price, 1990, on the
latter) often function to override Attach Low and Parallel, as in

John phoned the man, in Chicago.
Specify the length, in bits, of a word.

It is the phoning that is in Chicago, and the specification is in bits while the length is of a
word. Similarly, commas and pauses can override the Most Restrictive Context principle,
as in

John wants his driver, to go to Los Angeles.

Here we prefer the purpose adverbial reading in which John and the driver both are going
to Los Angeles.

6 Cognitive Significance

The analysis of parse preferences in terms of these two very general principles is quite
appealing, and more than simply because they subsume a great many cases. They seem
to relate somehow to deep principles of cognitive economy. The Most Restrictive Context
principle is a matter of taking all of the available information into account in constructing
interpretations. The “Low” of Attach Low and Parallel is an instance of a general cognitive
heuristic to interpret features of the environment as locally as possible. The “Parallel”
exemplifies a general cognitive heuristic to see similarity wherever possible, a heuristic
that promotes useful generalizations.
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In the TACITUS project for using commonsense knowledge in the understanding of texts about
mechanical devices and their failures, we have been developing various commonsense theories that are
needed to mediate between the way we talk about the behavior of such devices and causal models of their
operation. Of central importance in this effort is the axiomatization of what might be called
‘‘commonsense metaphysics’’, This includes a number of areas that figure in virtually every domain of
discourse, such as granularity, scales, time, space, material, physical objects, shape, causality,
functionality, and force. Qur effort has been to construct core theories of each of these areas, and then
to define, or at least characterize, a large number of lexical items in terms provided by the core theories.
In this paper we discuss our methodological principles and describe the key ideas in the various domains

we are investigating.

1. INTRODUCTION

In the TACITUS project for using commonsense knowl-
edge in the understanding of texts about mechanical
devices and their failures, we have been developing
various commonsense theories that are needed to me-
diate between the way we talk about the behavior of
such devices and causal models of their operation. Of
central importance in this effort is the axiomatization of
what might be called ‘‘commonsense metaphysics®.
This includes a number of areas that figure in virtually
every domain of discourse, such as scalar notions,
granularity, time, space, material, physical objects,
causality, functionality, force, and shape. Our approach
to lexical semantics is to construct core theories of each
of these areas, and then to define, or at least character-
ize, a large number of lexical items in terms provided by
the core theories. In the TACITUS system, processes
for solving pragmatics prcblems posed by a text will use
the knowledge base consisting of these theories, in
conjunction with the logical forms of the sentences in
the text, to produce an interpretation. In this paper we
do not stress these interpretation processes; this is
another, important aspect of the TACITUS project, and
1t will be described in subsequent papers (Hobbs and
Martin, 1987).

This work represents a convergence of research in
lexical semantics in linguistics and efforts in artificial

intelligence to encode commonsense knowledge. Over
the years, lexical semanticists have developed formal-
isms of increasing adequacy for encoding word mean-
ing, progressing from simple sets of features (Katz and
Fodor, 1963) to notations for predicate-argument struc-
ture (Lakoff, 1972; Miller and Johnson-Laird, 1976), but
the early attempts still limited access to world knowl-
edge and assumed only very restricted sorts of process-
ing. Workers in computational linguistics introduced
inference (Rieger, 1974; Schank, 1975) and other com-
plex cognitive processes (Herskovits, 1982) into our
understanding of the role of word meaning. Recently
linguists have given greater attention to the cognitive
processes that would operate on their representations
(e.g., Talmy, 1983; Croft, 1986). Independently, in arti-
ficial intelligence an effort arose to encode large amounts
of commonsense knowledge (Hayes, 1979; Hobbs and
Moore, 1985; Hobbs et al. 1985). The research reported
here represents a convergence of these various devel-
opments. By constructing core theories of certain fun-
damental phenomena and defining lexical items within
these theories, using the full power of predicate calcu-
lus, we are able to cope with complexities of word
meaning that have hitherto escaped iexical semanticists.
Moreover, we can do this within a framework that gives
full scope to the planning and reasoning processes that
manipulate representations of word meaning.

Copyright 1987 by the Assoc ation for Computational Linguistics. Permission to copy withont fee all or part of this material is granted provided
that the copies are not made for direct commercial advartage and the CL reference and this copyright notice are included on the first page. To
copy otherwise, or to republish, requires a fee and/or specific permission.
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In constructing the core theories we are attempting to
adhere to several methodological principles:

1. One should aim for characterization of concepts,
rather than definition. One cannot generally expect to
find necessary and sufficient conditions for a concept.
The most we can hope for is to find a number of
necessary conditions and a number of sufficient condi-
tions. This amounts to saying that a great many predi-
cates are primitives, but they are primitives that are
highly interrelated with the rest of the knowledge base.

2. One should determine the minimal structure nec-
essary for a concept to make sense. In efforts to
axiomatize an area, there are two positions one may
take, exemplified by set theory and by group theory. In
axiomatizing set theory, one attempts to capture exactly
some concept that one has strong intuitions about. If the
axiomatization turns out to have unexpected models,
this exposes an inadequacy. In group theory, by con-
trast, one characterizes an abstract class of structures.
If it turns out that there are unexpected models, this is
a serendipitous discovery of a new phenomenon that we
can reason about using an old theory. The pervasive
character of metaphor in natural language discourse
shows that our commonsense theories of the world
ought to be much more like group theory than set
theory. By seeking minimal structures in axiomatizing
concepts, we optimize the possibilities of using the
theories in metaphorical and analogical contexts. This
principle is illustrated below in the section on regions.
One consequence of this principle is that our approach
will seem more syntactic than semantic. We have
concentrated more on specifying axioms than on con-
structing models. Our view is that the chief role of
models in our effort is for proving the consistency and
independence of sets of axioms, and for showing their
adequacy. As an example of the last point, many of the
spatial and temporal theories we construct are intended
at least to have Euclidean space or the real numbers as
one model, and a subclass of graph-theoretical struc-
tures as other models.

3. A balance must be struck between attempting to
cover all cases and aiming only for the prototypical
cases. In general, we have tried to cover as many cases
as possible with an elegant axiomatization, in line with
the two previous principles, but where the formalization
begins to look baroque, we assume that higher pro-
cesses will block some inferences in the marginal cases.
We assume that inferences will be drawn in a controlled
fashion. Thus, every outré, highly context-dependent
counterexample need not be accounted for, and to a
certain extent, definitions can be geared specifically to 2
prototype.

4. Where competing ontologies suggest themselves in
a domain, one should try to construct a theory that
accommodates both. Rather than commit oneself to
adopting one set of primitives rather than another, one
should show how either set can be characterized in
terms of the other. Generally, each of the ontologies is
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useful for different purposes, and it is convenient to be
able to appeal to both. Our treatment of time iilustrates
this.

5. The theories one constructs should be richer in
axioms than in theorems. In mathematics, one expects
to state half a dozen axioms and prove dozens of
theorems from them. In encoding commonsense knowl-
edge, it seems to be just the opposite. The theorems we
seek to prove on the basis of these axioms are theorems
about specific situations that are to be interpreted, in
particular, theorems about a text that the system is
attempting to understand.

6. One should avoid falling into *‘black holes’’. There
are a few ‘‘mysterious” concepts that crop up repeat-
edly in the formalization of commonsense metaphysics.
Among these are ‘‘relevant’ (that is, relevant to the
task at hand) and ‘‘normative’ (that is, conforming to
some norm or pattern). To insist upon giving a satisfac-
tory analysis of these before using them in analyzing
other concepts is to cross the event horizon that sepa-
rates lexical semantics from philosophy. On the other
hand, our experience suggests that to avoid their use
entirely is crippling; the lexical semantics of a wide
variety of other terms depends upon them. Instead, we
have decided to leave them minimally analyzed for the
moment and use them without scruple in the analysis of
other commonsense concepts. This approach will aliow
us to accumulate many examples of the use of these
mysterious concepts, and in the end, contribute to their
successful analysis. The use of these concepts appears
below in the discussions of the words ‘‘immediately*’,
‘‘sample’’, and “‘operate’’.

We chose as an initial target the problem of encoding
the commonsense knowledge that underlies the concept
of *‘wear’’, as in a part of a device wearing out. Our aim
was to define ‘‘wear’’ in terms of predicates character-
ized elsewhere in the knowledge base and to be able to
infer some consequences of wear. For something to
wear, we decided, is for it to lose imperceptible bits of
material from its surface due to abrasive action over
time. One goal, which we have not yet achieved, is to be
able to prove as a theorem that, since the shape of a part
of a mechanical device ic ~“en functional and since loss
of material can result in a change of shape, wear or a
part of a device can cause the failure of the device as a
whole. In addition, as we have proceeded, we have
charat *¢.ized a number of words found in a set of target
texts, as it has become possible.

We are encoding the knowledge as axioms in what is
for the most part a first-order logic, described by Hobbs
(19852), although gquantification over predicates is
sometimes convenient. In the formalism there is a
nominalization operator ** ' ** for reifying events and
conditions, as expressed in the following axiom schema:

(Vx)p(x) = (3e)p’(e,x) N\ Exist(e)

That is, p is true of x if and only if there is a condition
e of p's being true of x and e exists in the real world.




* Jerry R. Hobbs et al.

In our implementation so far, we have been proving
simple theorems from our axioms using the CGS theo-
rem-prover developed by Mark Stickel (1982), and v 2
are now beginning to use the knowledge base in text
processing.

2 REQUIREMENTS ON ARGUMENTS OF PREDICATES

There is a notational convention used below that de-
serves some explanation. It has frequently been noted
that relational words in natural language can take only
certain types of words as their arguments. These are
usually described as selectional constraints. The same is
true of predicates in our knowledge base. The con-
straints are expressed below by rules of the form

p(x,y) : (x,y)

This means that for p even to make sense applied to x
and y, it must be the case that r is true of x and y. The
logical import of this rule is that wherever there is an
axiom of the form

v x,y)p(x,y) D gq(x,y)
this is really to be read as

v x,y)p(x,y) N\ rix,y) D q(x,y)

The checking of selectional constraints, therefore,
emerges as a by-product of other logical operations: the
constraint r(x,y) must be verified if anything else is to be
proved from p(x,y).

The simplest example of such an r(x,y) is a conjunc-
tion of sort constraints r,(x) /\ ry(y). Our approach is a
generalization of this, because much more complex
requirements can be placed on the arguments. Con-
sider, for example, the verb *‘range’’. If x ranges from y
to z, there-must be a scale s that includes y and z, and x
must be a set of entities that are located at various
places on the scale. This can be represented as follows:

range(x,y,z) : (3 s) [scale(s) Ny € s/\ z € s N\ set(x)
ANNVwuexd@@v)veEsNatuv)

3 THeE KNOWLEDGE BASE
3.1 SETS AND GRANULARITY

At the foundation of the knowledge base is an axioma-
tization of set theory. It follows the standard Zermelo-
Fraenkel approach, except that there is no axiom of
infinity.

Since so many concepts used in discourse are grain-
dependent, a theory of granularity is also fundamental
(see Hobbs 1985b). A grain is defined in terms of an
indistinguishability relation, which is reflexive and sym-
metric, but not necessarily transitive. One grain can be
a refinement of another, with the obvious definition.
The most refined grain is the identity grain, i.e., the one
in which every two distinct elements are distinguish-
able. One possible relationship between two grains, one
of which is a refinement of the other. is what we call an
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**Archimedean relation’’, after the Archimedean prop-
erty of real numbers. Intuitively, if enough events occur
that are imperceptible at the coarser grain g, but per-
ceptible at the finer grain g,, the aggregate will eventu-
ally be perceptible at the coarser grain. This is an
important property in phenomena subject to the heap
paradox. Wear, for instance, eventually has significant
consequences.

3.2 SCALES

A great many of the most common words in English
have scales as their subject matter. This includes many
prepositions, the most common adverbs, comparatives,
and many abstract verbs. When spatial vocabulary is
used metaphorically, it is generally the scalar aspect of
space that carries over to the target domain. A scale is
defined as a set of elements, together with a partial
ordering and a granularity (or an indistinguishability
relation). The partial ordering and the indistinguishabil-
ity relation are consistent with each other:

Vaxyz2)x<yAy~z2ldx<z\yx~2z

That is, if x is less than y and y is indistinguishable from
2, then either x is less than z or x is indistinguishable
from z.

It is useful to have an adjacency relation between
points on a scale, and there are a number of ways we
could introduce it. We could simply take it to be
primitive; in a scale having a distance function, we
could define two points to be adjacent when the distance
between them is less than some ¢; finally, we could
define adjacency in terms of the grain size for the scale:

(¥ x,y,5) adj(x,y,s) =
@z~ xNz~yAlx~,yl,

That is, distinguishable elements x and y are adjacent on
scale s if and only if there is an element z which is
indistinguishable from both.

Two important possible properties of scales are con-
nectedness and denseness. We can say that two ele-
ments of a scale are connected by a chain of adj
relations:

(Vx,y,s)connected(x,y,s) =
adj(x,y,s) \/ (3z)adj(x,2,5) /\ connected(z,y,s)

A scale is connected (sconnected) if all pairs of elements
are connected. A scale is dense if between any two
points there is a third point, until the two points are so
close together that the grain size no longer allows us to
determine whether such an intermediate point exists.
Cranking up the magnification could well resolve the
continuous space into a discrete set, as objects into
atoms.

(Vs)dense(s) =
Vxy)xEsNyEsNx<gy

D3F)x <z N2 < y)V @)x ~2 Nz ~y)
Tais expresses the commonsense notion of continuity.
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A subscale of a scale has as its elements a subset of
the elements of the scale and has-as its partial ordering
and its grain the partial ordering and the grain of the
scale,

(V 5,,82)subscale(s,,s,) = subset(s,,s,)

ANV <y =x<aA[x~ y=x~3)]
An interval can be defined as a connected subscale:
(Vi)interval(i) = (3s)scale(s)

N subscale(i,s) /\ sconnected(i)

The relations between time intervals that Allen and
Kautz (1985) have defined can be defined in a straight-
forward manner in the approach presented here, but for
intervals in general.

A concept closely related to scales is that of a
**cycle”. This is a system that has a natural ordering
locally but contains a loop globally. Examples are the
color wheel, clock times, and geographical locations
ordered by ‘‘east of”’. We have axiomatized cycles in
terms of a ternary between relation whose axioms
parallel those for a partial ordering.

The figure-ground relationship is of fundamental im-
portance in language. We encode it with the primitive
predicate at. It is possible that the minimal structure
necessary for something to be a ground is that of a scale;
hence, this is a selectional constraint on the arguments
of at.!

at(x,y) : 3s)y € s /\ scale(s)

At this point, we are already in a position to define some
fairly complex words. As an illustration, we give the
example of *‘range as in *‘x ranges from y to 2"’

(Vx,y,2)range(x,y,z) =
(3s,5,,uy,ux)scale(s) N subscale(s,,s)
\ bottom(y,s)) N\ top(z,s,)
Nuy € x N\ at(uy,y) N\ u, € x N\-at(u,,z)
N (Vu)lu € x D 3v)v € 5y N\ at(u,v))

That is, x ranges from y to z if and only if y and z are the
bottom and top of a subscale s, of some scale s and x is
a set which has elements at y and z and all of whose
elements are located at points on s,.

A very important scale is the linearly ordered scale of
numbers. We do not plan to reason axiomatically about
numbers, but it is useful in natural language processing
to have encoded a few facts about numbers. For exam-
ple, a set has a cardinality which is an element of the
number scale.

Verticality is a concept that would most properly be
analyzed in the section on space, but it is a property that
many other scales have acquired metaphorically, for
whatever reason. The number scale is one of these.
Even in the absence of an analysis of verticality, it is a

1 However, we are currently cxamining an approach in which a more
abstract concept, *‘system", discussed in Section 3.6.3, is taken to be
the minimal structure for expressing location.
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useful property to have as a primitive in lexical seman-
tics.

The word *‘high" is a vague term asserting that an
entity is in the upper region of some scale. It requires
that the scale be a vertical one, such as the number
scale. The verticality requirement distinguishes ‘*high"’
from the more general term ‘“‘very'’; we can say *‘very
hard” but not *‘highly hard”. The phrase ‘‘highly
planar’ sounds all right because the high register of
“planar’’ suggests a quantifiable, scientific accuracy,
whereas the low register of ‘‘flat"’ makes **highly flat”
sound much worse.

The test of any definition is whether it allows one to
draw the appropriate inferences. In our target texts, the
phrase *‘high usage” occurs. Usage is a set of using
events, and the verticality requirement on ‘‘high”
forces us to coerce the phrase into *‘a high or large
number of using events’’. Combining this with an axiom
stating that the use of a mechanical device involves the
likelihood of abrasive events, as defined below, and
with the definition of ‘‘wear” in terms of abrasive
events, we should be able to conclude the likelihood of
wear.

3.3 TIME: TWO ONTOLOGIES

There are two possible ontologies for time. In the first,
the one most acceptable to the mathematically minded,
there is a time line, which is a scale having some
topological structure. We can stipulate the time line to
be linearly ordered (although it is not in approaches that
build ignorance of relative times into the representation
of time (e.g., Hobbs, 1974) nor in approaches employing
branching futures (e.g., McDermott, 1985)), and we can
stipulate it to be dense (although it is not in the situation
calculus). We take before-to be the ordering on the time
line:

(V1,,t)before(t, 1,) =
@T)Time-line(MN 1, ETNLETN, < 1y

We allow both instants and intervals of time. Most
events occur at some instant or during some interval. In
this approach, nearly every predicate takes a time
argument,

In the second ontology, the one that seems to be
more deeply rooted-in language, the world consists of a
large number of more or less independent processes, or
histories, or sequences of events. There is a primitive
relation change between conditions. Thus,

change(e,,e;) N\ p'(e),x) N\ q'(ey,x)

says that there is a ¢hange from the condition ¢, of p’s
being true of x to the condition e, of g’s being true of x.

The time line in this ontology is then an artificial
construct, a regular sequence of imagined abstract
events (think of them as ticks of a clock in the National
Bureau of Standards) to which other events can be
related. The change ontology seems to correspond to
the way we experience -the world. We recognize rela-
tions of causality. change of state. and copresence
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among events and conditions. When events are not
related in these ways, judgments of relative time must
be mediated by-copresence relations between the events
and events on a clock and change of state relations on
the clock.

The predicate change possesses a limited transitiv-
ity. There has been a change from Reagan’s being an
actor to Reagan’s-being president, even though he was
governor in between. But we probably do not want to
say there has been a change from Reagan's being an
actor to Margaret Thatcher's being prime minister, even
though the second event comes after the first.

In this ontology, we can say that any two times,
viewed as events, always have a change relation be-
tween them.

(V1) t.)before(t),1;) D change(t,,t,)
The predicate change is related to before by the axiom
(Ve,,e;) change(ey,es) D
(311,19) at(e),1)) N\ at(eq,ty) /\ before(t,,ts)

That is, if there is a change from e, to e,, then there is
a time 1, at which e, occurred and a time 1, at which e,
occurred, and ¢, is before 5. This does not allow us to
derive change of state from temporal succession. For
this, we would need axioms of the form

(Vey,ea,11,02,%) p'(ey,x) N\ atley,t))
N q'(e2,x) N\ at(eq,t;) /\ before(ty,t,)
D-change(e,,e,)-

That is, if x is p at time ¢, and q at a later time 1,, then
there has been a change of state from one to the other.
This axiom would not necessarily be true for all p's and
g’s. Time arguments in predications can be viewed as
abbreviations:

(Y x,0p(x,) = (3e)p’(e,x) /\ atle,t)

The word ‘‘move’’, or the predicate move, (as in “‘x
moves from y to z”*) can then be defined equivalently in
terms of change,

(V x,y,z)move(x,y,z) =

(3ey,e,) change(e,,e,) /\ at'(ey,x,y) N\ at'(e;,x,2)
or-in terms of the time line,
(¥ x,y,2) move(x,y,z) =

(31,,19) at(x,y,1;) /\ at(x,2,15) /\ before(t;,t,)

(The latter definition has to be complicated a bit to
accommodate cyclic motion. The former axiom is all
right as it stands, provided there is also an axiom saying
that for there to be a change from a state to the same
state, there-must-be an intermediate different state.)
In English and apparently all other natural languages,
both ontologies are represented in the lexicon. The time
line ontology is found in clock and calendar terms, tense
systems of verbs, and in the deictic temporal Jocatives
such as “'vesterdav’'. *‘today’. ‘“‘tomorrow'’. ‘‘last
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night"’, and so on. The change ontology is exhibited in
most verbs, and in temporal clausal connectives. The
universal presence in natural languages of both classes
of lexical items and grammatical markers requires a
theory that can accommodate both ontologies, illustrat-
ing the importance of methodological principle 4.

Among temporal connectives, the word *‘while"”
presents interesting problems. In *'e, while e,", e, must
be an event occurring over a time interval; e; must be an
event and may occur either at a point or over an
interval. One’s first guess is that the point or interval for
e, must be included in the interval for e.. However,
there are cases, such as

The electricity should be off while the switch is being
repaired.

which suggest the reading *‘e, is included in e,’’. We
came to the conclusion that one can infer no more than
that e, and e, overlap, and any tighter constraints result
from implicatures from background knowledge.

The word ‘‘immediately’’, as in “‘immediately after
the alarm’, also presents a number of problems. It
requires its argument e to be an ordering relation
between two entities x and y on some scale s.

immediate(e) : (3x,y,s)less-than’(e,x,y,s)
It is not clear what the constraints on the scale are.
Temporal and spatial scales are acceptable, as in *‘im-

mediately after the alarm’ and ‘‘immediately to the
left”, but the size scale is not:

* John is immediately larger than Bill.

Etymologically, it means that there are no intermediate
entities between x and-y-on s. Thus,

(Ve,x,y,s) immediate(e) /\ less-than'(e,x,y,s)
271 (3z)less-than(x,z,s) /\ less-than(z,y,s)

However, this will only work if we restrict z to be a
relevant entity. For example, in the sentence

We disengaged the compressor immediately after the
alarm.

the implication is that no event that could damage the

compressor occurred between the alarm and the disen-

gagement, since the text is about equipment failure,
3.4 SPACES AND DIMENSION: THE MINIMAL STRUCTURE

The notion of dimension has been made precise in linear
algebra. Since the concept of a region is used metaphor-
ically as well as in the spatial sense, however, we were
concerned to determine the minimal structure a system
requires for it to make sense to call it a space of more
than one dimension. For a two-dimensional space, there
must be a scale, or partial ordering, for each dimension.
Moreover, the two scales must be independent, in that
the order of elements on one scale can not be deter-
mined from their order on the other. Formally,

(V sp)space(sp) =
(3sy.57) scaley(s,.5p) N\ scales(sa.5p)
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Figure 1.1 The Simplest Space.

A @x)l@yy) [x <, » Nx <, 3]
N@ylx <, Ay, Ny, <, x]]

Note that this does not allow <; to be simply the
reverse of <;. An unsurprising consequence of this
definition is that-the minimal example of a two-dimen-
sional space consists of three points (three points deter-
-mine-a plane), e.g., the-points A, B, and C, where

A<,B,A<,C,C<,A,A<,B.

Thisis illustrated in Figure 1.

The dimensional-scales are apparently found in_all
natural -languages in relevant domains. The familiar
three-dimensional space of .common sense can be de-
fined by the three scale pairs ‘‘up-down”, *‘front-
back", and *‘left-right’’; the two-dimensional plane of
the commonsense conception of the earth’s surface is
represented by the two scale pairs ‘‘north-south' and
‘‘east-west’’,

The-simplest, although not the only, way to define
adjacency inthe space is as adjacency on both scales:

(Vx,y,sp)adj(x,y,sp) =

(3sy,54) scaley(sy,sp) /\ scaley(s3,5p)

/\ adj(x)yisl)’/\ adi(x,}’»sz)

A region is a:subset of a space. The surface and interior:
of a region can be defined in terms of adjacency, in a
-manner-paralieling the definition of a boundary in point-
set topology. In the following, s is the boundary or
surface of a two- or three-dimensional region r embed-
-ded in_aspace sp.
(V. s,r,sp)surface(s,r,sp) =

Vx)x€ErdxEs=

(Ey)y € sp A1 (y € r) N\ adj(x,y,sp))]

‘Finally, we can define the notion of *‘contact”’ in terms
of points in-different regions being adjacent:
(¥ ry,rosp)contact(ry, ry,sp) =

disioint(7.rd)NA (3 x,v)x € re Av-Era A adilx.v.sp))
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By picking the scales and defining adjacency right, we
can talk about points of contact between communica-
tion networks, systems of knowledge, and other meta-
phorical domains. By picking the scales to be the real
line and defining adjacency in terms of e-neighborhoods,
we get Euclidean space and can talk about contact
between physical objects.

3.5 MATERIAL

Physical objects and materials must be distinguished,
just as they are in apparently every natural language, by
means of the count noun-mass noun distinction. A
physical object is not a bit of material, but rather is
composed of a bit of material at any given time. Thus,
rivers and human bodies are physical objects, even
though their material constitution changes over time.
This distinction also allows us to talk about an object’s
losing material through wear and still remaining the
same object.

We will say that an entity b is a bit of material by
means of the expression material(b). Bits of material are
characterized by both extension and cohesion. The
primitive predication occupies(b,r,t) encodes extension,
saying that-a bit of material b occupies a region r at time
1. The topology of a bit of material is then parasitic on
the topology of-the region ii occupies. A part b; of a bit
of materia! b is-a bit of material whose occupied region
is always a subregion of the region occupied by b.
Point-like particles (particle) are defined in terms of
points in the occupied region, disjoint bits (disjointbit)
in terms of the disjointness of regions, and contact
between bits in terms of contact between their regions.
We can then state as follows the principle of non-joint-
occupancy that two bits of material cannot occupy the
same-place at the same time:

(Y by, by)(disjointbit(b,,b,)
DV x,y,b3,b,) interior(bs,b,) /\ interior(b,,b,)
N particle(x,b;) /\ particle(y,b,)
D= (Az)at(x, 2) N\ at(y, z))

That is, if bits b, and b, are disjoint, then there is no
entity z-that is at interior points in both b, and b,. At
some future point in our work, this may emerge-as a
consequence of a richer theory of cohesion and force.

The cohesion of materials is also a primitive prop-
erty, for we must distinguish between a bump on the
surface of an object and a chip merely lying on the
surface. Cohesion depends on a primitive relation bond
between particles of material, paralleling the role of adj
in regions. The relation arrached is defined as the
transitive closure of bond. A topology of cohesion is

‘built up in a manner analogous to the topology of

regions. In addition, we have encoded the relation that
bond bears to motion, i.e., that bonded bits remain
adjacent and that one moves when the other does, and

the relation- of bond to force, ie. that there is a

characteristic -force that breaks a bond in a given
material.

2 W




Jerry R. Hobbs et al.

Different materials react in different ways to forces of
various strengths. Materials subjected to force exhibit
orfail to exhibit several invariance properties, proposed
by Hager (1985). If the material is shape-invariant with
respect to a particular force, its shape remains the same.
If it is topologically invariant, particles that are adjacent
remain adjacent. Shape invariance implies topological
invariance. If subjected to forces of a certain strength or
degree d,, a material ceases being shape-invariant. At a
force of strength d, = d,, it ceases being topologically
invariant, and at a force of strength d; = d,, it simply
breaks. Metals exhibit the full range of possibilities, that
is, 0 < d; < d, < d; < =, For forces of strength d < d,
the material is ‘*hard"’; for forces of strength 4 where d,
<d < d,, itis *flexible’’; for forces of strength d where
d, <d <d,,itis ‘“‘malleable”. Words such as **ductile"’
and “‘elastic’’ can be defined in.terms of this vocabu-
lary, together with predicates about the geometry of the
bit of material. Words such as *‘brittle” (d, = d, = d,)
and **fluid” (d, = 0, dy = ) can also be defined in these
terms. While we should not expect to be able to define
various material terms, like ‘‘metal” and ‘‘ceramic”’,
we can certainly characterize many of their properties
with this vocabulary.

Because of its invariance properties, material inter-
acts with containment and motion. The word *‘clog”
illustrates this. The predicate clog is a three-place
relation: x clogs y against the flow of z. It is the
obstruction by x of z’s motion through y, but with the
selectional restriction that z must be something that can
flow, such as a liquid, gas, or powder. If a rope is
passing through a hole in a board, and a knot in the rope
-prevents-it from going through, we do not say that the
hole is clogged. On the other hand, there do not seem to
be any selectional constraints on x. In particular, x can
be identical with z: glue, sand, or molasses can clog a
passageway against its own flow. We can speak of
clogging where the obstruction of flow is not complete,
but it -must be thought of as *‘nearly’” complete.

3.6 OTHER DOMAINS

3.6.1 CAUSAL CONNECTION
-Attachment within materials is one variety of causal
connection. In general, if two entities x and y are
causally connected with respect to some behavior p of
x, then whenever p happens to x, there is some corre-
sponding-behavior g that happens to y. In the case of
-attachment, p and g are both move. A particularly
-common kind of causal connection between two entities
is one mediated by the motion of a third entity from one
_-to the. other. (This might be called-a ‘‘vector boson’’
connection.) Photons mediating the connection between
‘the sun and our eyes, raindrops connecting a state of the
clouds with the wetness of our skin and clothes, a virus
-being transmitted from one person to another, and
utterances passing between people are all examples of
such-causal connections. Barriers, openings, and pene-
tration are all defined with respect to paths of causal
connection,
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3.6.2 FORCE

The concept of ‘‘force’ is axiomatized, in a way
consistent with Talmy's treatment (1985), in terms of
the predications force(a,b,d,) and resist(b,a,d,) — a
forces against b with strength d, and b resists a's action
with strength d,. We can infer motion from facts about
relative strength. This treatment can also be specialized
to Newtonian force, where we have not merely move-
ment, but acceleration. In addition, in spaces in which
orientation is defined, forces can have an orientation,
and a version of the ‘‘parallelogram of forces’’ law can
be encoded. Finally, force interacts with shape in ways
characterized by words like *’stretch’, ‘‘compress’’,
“bend’’, “twist’’, and *‘shear’’.

3.6.3 SYSTEMS AND FUNCTIONALITY

An important concept is the notion of a ‘‘system",
which is a set of entities, a set of their properties, and a
set of relations among them. A common kind of system
is one in which the entities are events and conditions
and the relations are causal and enabling relations. A
mechanical device can be described as such a system —
in a sense, in terms of the plan it executes in its
operation. The function of various parts and of condi-
tions of those -parts is then the role they play in this
system, or plan.
The intransitive sense of *‘operate’’, as in

The diesel was operating.

involves systems and functionality. If an entity x oper-
ates, there must be a larger system s of which x is a part.
The entity x itself is a system with parts. These parts
undergo normative state changes, thereby causing x to
undergo normative state changes, thereby causing x to
produce an effect with a normative function in the larger
system s. The concept of ‘‘normative” is discussed
below.

3.64 SHAPE

We have been approaching the problem of characteriz-
ing shape from a number of different angles. The
classical treatment of shape is via the notion of *‘simi-
larity” in Euclidean geometry, and in Hilbert's formal
reconstruction of Euclidean geometry (Hilbert, 1902)
the key primitive concept seems to be thu. of ‘‘con-
gruent angles”’, Therefore, we first sought to develop a
theory -of ‘‘orientation’’. The shape of an object can
then be characterized in terms of changes in orientation
of a tangent as one moves about on the surface-of the
object, as-is done in some vision research (e.g., Zahn
and Roskies, 1972). In all of this, sinc **shape” can be
used loosely and metaphorically, one question we are
asking is whether some minimal, abstract structure can
be found in which-the notion of “‘shape’’ makes sense.
Consider, for instance, a graph in which one scale is
discrete, or even unordered. Accordingly, we have been
examining a number of examples, asking when it seems
right to say two structures have different shapes.

‘We have also examined the interactions of shape and
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functionality (see Davis, 1984). What seems to be
crucial is how the shape of an obstacle constrains the
motion of a substance or of an object of a particular
shape (see Shoham, 1985). Thus, a funnel concentrates
the flow of a liquid, and similarly, a wedge concentrates
force. A box pushed against a ridge in the floor will
topple, and a rotating wheel is a limiting case of contin-
uous toppling.

3.7 HITTING, ABRASION, WEAR, AND RELATED CONCEPTS

For x to hit y is for x to move into contact with y with
some force.

The basic scenario for an abrasive event is that there
is an impinging bit of material m that hits an object 0 and
by doing so removes a pointlike bit of material b, from
the surface of o:

abr-event'(e,m,0,by) : material(m)

N (V1) at(e,t} D topologically-invariant(o,t)

(V e,m,0,bp)abr-event’(e,m,0,b,) =
(3 1,b,5,e,,e4,e4) atle,t) /\ consists-oflo,b,t)
N\ surface(s,b) /\ particle(by,s) /\ change'(e,e,,e,)
/\ attached'(e,,by,b) /\ not'(ea,e,) /\ cause(es,e)
N\ hit'(es,m;by)

That is, e is an abrasive event of a material m impinging
on a topologically invariant object o and detaching b, if
and only if b, is a particle of the surface s of the bit of

material material b of which o consists at the time r at

which e occurs, and e is a change from the condition e,
of by’s being atteched to b to the negation e, of that
condition, where th2 change is caused by tie hitting e,
of m against by,

After the abrasive cvent, the pointlike bit & is no
longer a part of the object ¢:

(Ve,m,o0,by,ey,€5,15)abr-event' e, m,o0,b,)

/\ change'(e,ey,e,) /\ at(ey,ts)

N\ consists-0f(0,b,,15)

2 1 partiby,0-)

That is, «f e is an abrasive event of m impinging against
o and detaching b, and e is a change from e, to e,, and
e, holds at time t,, thsn by is not part of the bit of
material b, of whicn o consists at t,. It_is heccssary to
state this explicitly since objects and bits of maserialcan
bz discontinuous.

An gbras;on i a-large sat of abrasive events widely
distributed throu_h-some nonpointlike region on-the
surface of an object:

(¥ e,m,0) abrade’(e,n;0) =

(3 bs)large(bs)

N[(Yedle, € e D (H by)by & b5 A\ abr-ovent'(e,,m,0;b;)]
N (Vb,s,t)iate,t) /\ consists-of{o,b,t) /\ surface(s;b)
D (Arr cubrvoion(r ) I widelv.distributed(bs.r M
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That is, e is an abrasion by m of o if and only if there is
a large set bs of bits of material and e is a set of abrasive
events in which m impinges on o and removes a bit b,
an element in bs, from o, and if e occurs at time tand o
consists of material b at time ¢, then there is a subregion
r of the surface s of b over which bs is widely distrib-
uted.

Wear can resuit from a large collection of abrasive
events distributed over time as well as space (so that
there may be no instant at which enough abrasive
events occur to count as an abrasion). Thus, the link
between wear and abrasion is via the common notion of
abrasive events, not via a definition of wear in terms of
abrasion.

(V e,m,0) wear'(e,m,0) =
(3bs) large(bs)
N [(Ve)le, € e
(3 bg)by € bs /\ abr-event'(e,,m,0,bg)]
N\ Qi)linterval(i) N\ widely-distributed(e,i)])

That is, e is a wearing by x of o if and only if there is a
large set bs of bits of material and e is a set of abrasive
events in which m impinges on o and removes a bit by,
an element in bs, from.o, and e is widely distributed
over some time interval i.

We have not yet characterized the concept *‘large’’,
but we anticipate that it would be similar to **high"’. The
concept *‘widely distributed” concerns systems. If x-is
distributed in y, then y is a system and x is a set of
entities which are located at components of y. For the
distribution to be wide, most of the elements of a
partition of y, determined independently of the distribu-
tion, must contain components which have elements.of
x at them.

The word *‘wear” is one of a large class of other
events involving cumulative, gradual loss of material —
events described by words like ‘“‘chip’’, ‘‘corrode”,
“file”, **erode”, **sand’’, *‘grind’’, ‘‘weather"’, *‘rust”’,
“tarnish’’, ‘‘eat away”, ‘‘rot”, and ‘“‘decay”. All of
these Icxical items can now be defined as variations on
the definitior of ‘‘wear’’, since we have built up the
axiomatizations underlying ‘‘wear”. We are now in a
position to characterize the entire class. We will illus-
trate this by defining two different types of variants of
“‘wear’ — *‘chip” and-‘‘corrode’’.

**Chip”’ differs from ‘‘wear”’ in three ways: the bit of
material removed in one abrasive event is larger (it need
not be point-like), it need not happen because of a
material Intting against tiie object, and *‘chip’* does not
require (though it-does permit) a large collection of such
events: one can say that-some object is chipped even if
there is ohe chip in it. Thus, we slightly alter the
definition of abr-event to accommodate these changes:

(V e,m,0,by)chip’(e;m,0,b,) =
(31.h.5.0..05.0)atle.t) /N consists-ofio.b.1)
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N\ surface(s,b) N\ part(by,s) /\ change'(e,e,.e,)
N\ attached'(e,bo,b) /\ not'(e,,.e,)

That is, e is a chipping event by a material m_of a bit of
material b, from an object o if and only if b, is a part of
the surface s of the bit of material material b of which o
consists at the time ¢ at which e occurs, and e is a
change from the condition e, of b,'s being attached to b
to the negation e, of that condition.

**Corrode’’ differs from **wear’ in that the bit of
material is chemically transformed as well as being
detached by the contact event; in fact, in some way the
chemical transformation causes the detachment. This
can be captured by adding a condition to the abrasive
event that renders it a (single) corrode event:

corrode-event(m,o,b,) : fluidim)
N\ contact(m,bgy)

(V e,m,0,by) corrode-event'(e,m,0,by) =
(3 1,b,5,e,,e4,¢,) atle,t) /\ consists-ofio,b,1)
N\ surface(s,b) /\ particle(by,s) /\ change'(e,e,,e,)
/\ attached'(ey,bo,b) /\ not'(ea,e,) /\-cause(e,,e)
/\ chemical-change'(e;,m, b}

That is, e is a corrosive event by 2 fluid m-of-a bit of
material b, with which it is in contact if and only if b, is
a particle of the surface s of the -bit of material b of
which o consists at the time ¢ at which e occurs, and e
is a change from the condition e, of by's being attached
to b to the negation e, of that condition, where the
change is caused by a chemical reaction e; of m with b,.
**Corrode”’ itsclf may be defined in a paraliel fashion
to ‘‘wear’’, by substituting corrode-event for abr-event.
All of this suggests the generalization that abrasive
events, chipping and corrode events all detach the bit in
question, and that we may describe all of these as
detaching events. We can then generalize the above
axiom about abrasive events that result -in loss of
material to the following axiom about-detaching:

(V e,m,0,by,e,,€,,t,) detach’'(e,m,0,b,)
N\ change'(e,e,,e;) /\ at(es,t,)/\ consists-of(0,t5,b,)
DN part(bo;bz)

That is, if e is a detaching event by m of b, from o, and

e is a change from e, to e,, and e, holds at time 1,, then.

by is not part of the bit of material b, of which o consists
at t,.

4 RELEVANCE AND THE NORMATIVE

Many of the concepts we are investigating have driven
us inexorably to the problems of what is meant by
“‘reievant’’ and by ‘‘normative’’. We do not.pretend to
have solved these problems. But for each of these
concepts we do have the beginnings of an account that
can play a role in analysis. if not vet in-implementation.
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Our view of relevance, briefly stated, is that some-
thing is relevant to some goal if it is a part of a plan to
achieve that goal. (A formal treatment of a similar view
is given in Davies, forthcoming.) We can illustrate this
with an example involving the word **sample”’, If a bit
of material x is a sample of another bit of material y,
then x is a part of y, and moreover, there are relevant
properties p and g such that it is believed that if p is true
of x then g is true of y. That is, looking at the properties
of the sample tells us something important about the
properties of the whole. Frequently, p and g are the
same property. In our target texts, the following sen-
tence occurs:

We retained an oil sample for future inspection.

The oil in the sample is a part of the total lube oil in
the Jube oil system, and it is believed that a property of
the sample, such as ‘‘contaminated with metal parti-
cles’’, will be true of all the lube oil as well, and that this
will provide information about possible wear on the
bearings. It is therefore relevant to the goal of maintain-
ing the machinery in good working order.

We have arrived at the following provisional account
of what it means to be ‘‘normative’’. For an entity to
exhibit a normative condition or behavior, it must first
of all be a component of a larger system. This system
has structure in the form of relations-among its compo-
nents. A pattern is a property of the system, namely, the
property of a subset of these stuctural relations holding.
A norm is a pattern established either by conventional
stipulation or by statistical regularity. An entity behaves
in a normative fashion if it is a component of a system
and instantiates a norm within that system. The word
“‘operate’’, discussed in Section 3.6.3, illustrates this.
When we say that an engine is operating, we have in
mind a larger system — i.e., the device the engine
drives — to which the engine may bear-various possible
relations. A subset of these relations-is stipulated to be
the norm — the way it is supposed to-work. We say it is
operating when it is instantia.ing this-norm.

§ CONCLUSION

The research we have been engagead in-has forced us to
explicate a complex set of commonsense concepts.
Since we have done it in as general a fashion as
possible, we expect to be able, building on this founda-
tion, to axiomatize a large number of other areas,
including areas unrelated to mechanical- devices. The
very fact that we have been able to characterize words
asdiverse as ‘‘range”’, ‘‘immediately”’, ‘‘brittle’’, “‘ope-
rate’’, and ‘‘wear’’ shows the promising nature of this
approach.
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TODD R. DAVIES

DETERMINATION, UNIFORMITY, AND RELEVANCE:
NORMATIVE CRITERIA FOR GENERALIZATION
AND REASONING BY ANALOGY

INTRODUCTION: THE IMPORTANCE OF PRIOR KNOWLEDGE
IN REASONIN’ AND LEARNING FROM INSTANCES

If an agent is to apply }.nowledge from its past experience to a present
episode, it must know what properties of the past situation can justifi-
ably be projected onto tne pres 12 . the basis of the known similarity
between the situations. The proble:.. of specifying when to generalize or
reason by analogy, and when no. to, therefore looms large for the
designer of a learning system. One would like to be able to program
into the system a set of criteria for rule formation from which the
system can correctly generalize from data as they are received. Other-
wise, all of the necessary rules the agent or system uses must be
programmed in ahead of time, so that they are either explicitly repre-
sented in the knowledge base or derivable from it.

Much of the research in machine learning, from the early days when
the robot Shakey was learning macro-operators for action (Nilsson,
1984) to more recent work on chunking (Rosenbloom and Newell,
1986) and explanation-based generalization (Mitchell et al., 1986), has
involved getting systems to learn and represent explicitly rules and
relations between concepts that could have been derived from the start.
In Shakey’s case, for example, the planning algorithm and knowledge
about operators in STRIPS were jointly sufficient for deriving a plan to
achieve a given goal. To say that Shakey “learned” a specific sequence
of actions for achieving the goal means only that the plan was not
derived until the goal first arose. Likewise, in explanation-based
generalization (EBG), explaining why the training example is an
instance of a concept requires knowing beforehand that the instance
embodies a set of conditions sufficient for the concept to apply, and
chunking, despite its power to simplify knowledge at the appropriate
level, does not in the logician’s terms add knowledge to the system.

The desire to automate the acquisition of rules, without programming
them into the system either implicitly or explicitly, has led to a good
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deal of the rest of the work in symbolic learning. Without attempting a
real summary of this work, it can be said that much of it has involved
defining heuristics for inferring general rules and for drawing conclu-
sions by analogy. For example, Patrick Winston's program for learning
and reasoning by analogy (Winston, 1980) attempted to measure how
similar a source and target case were by counting equivalent corre-
sponding attributes in a frame, and then projected an attribute from the
source to the target if the count was large enough. In a similar vein, a
popular criterion for enumerative induction of a general rule from
instances is the number of times the rule has been observed to hold.
Both types of inference, although they are undoubtedly part of the story
for how people reason inductively and are good heuristic methods for a
naive system,’ are nonetheless frought with logical (and practical) peril.
In reasoning by analogy, for exaniple, a large number of similarities
between two children does not justify the conclusion that one child is
named “Skippy” just because the other one is. First names are not
properties that can be projected with any plausibility based on the
similarity in the childrens’ appearance, although shirt size, if the right
similarities are involved, can be. In enumerative induction, likewise, the
formation of a general rule from a number of instances of co-occur-
rence may or may not be justified, as Nelson Goodman’s well-known
unprojectible predicate “grue” makes very clear (Goodman, 1983). So
in generalizing and reasoning by analogy we must bring a good deal of
prior knowledge to the situation 10 tell us whether the conclusions we
might draw are justified. Tom Mitchell has called the effects of this
prior knowledge in guiding inference the inductive “bias™ (Miichell,
1980).

A LOGICAL FORMULATION OF THE PROBLEM OF ANALOGY

Reasoning by analogy may be defined as the process of inferring that a
conclusion property Q holds of a particular situation or object T (the
target) from the fact that T shares a property or set of properties P
with another situation/object S (the source) which has property Q. The
set of common properties P is the similarity between S and T, and the
conclusion property Q is projected from § onto 7. The process may be
summarized schematically as follows:
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P(S)A Q(S)
P(T)

Q(T).

The form of argument defined above is nondeductive, in that its
conclusion does not follow syntactically just from its premises. Instances
of this argument form vary greatly in cogency. As an example, Bob's
car and Sue's car share the property of being 1982 Mustang GLX V6
hatchbacks, but we could not infer that Bob's car is painted red just
because Sue's car is painted red. The fact that Sue’s car is worth about
$3500 is, however, a good indication that Bob's car is worth about
$3500. In the former example, the inference is not compelling; in the
latter it is very probable, but the premises are true in both examples.
Clearly the plausibility of the conclusion depends on information that is
not provided in the premises. So the justification aspect of the logical
problem of analogy, which has been much studied in the field of
philosophy (see, e.g. Carnap, 1963; Hesse, 1966; Leblanc, 1969;
Wilson, 1964), may be defined as follows.

THE JUSTIFICATION PROBLEM:

Find a criterion which, if satisfied by any particular analo-
gical inference, sufficiently establishes the truth of the
projected conclusion for the target case.

Specifically, this may be taken to be the task of specifying background
knowledge that, when added to the premises of the analogy, makes the
conclusion follow soundly.

It might be noticed that the analogy process defined above can be
broken down into a two-step argument as follows: (1) Froua the first
premise P(S) A Q(S), conclude the generalization Vx P(x) = Q(x).
and (2) instantiate the generalization to T and apply modus ponens
to get the conclusion Q(T). in this process, only the first step is
nondeductive, so it looks as if the problem of justifying the analogy has
been reduced to the problem of justifying a single-instance inductive
generalization. This will in fact be the assumption henceforth — that the
criteria for reasoning by analogy can be identified with those for the
induction of a rule from one example. This amounts to the assumption
that a set of similarities judged sufficient for projecting conclusions
from the source 1o the target would remain sufficient for such a
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projection to any target case with the same set of similarities to the
source. There are clearly differences in plausibility among different
single-instance generalizations that should be revealed by correct
criteria. For example, if inspection of a red robin reveals that its legs
are longer than its beak, a projection of this conclusion onto unseen red
robins is plausible, but projecting that the scratch on the first bird’s
beak will be observed on a second red robin is implausible. However,
the criteria that allow us to distinguish between good and bad gener-
alizations from one instance cannot do so on the basis of many of the
considerations one would use for enumerative induction, when the
number of cases is greater than one. The criteria for enumerative
induction include (1) whether or not the conclusion property taken as 2
predicate is “entrenched” (unlike ‘grue’, for instance) (Goodman, 1983),
(2) how many instances have confirmed the generalization, (3) whether
or not there are any known counterexamples to the rule that is to be
inferred, and (4) how much variety there is in the confirming instances
on dimensions other than those represented in the rule’s antecedent
(Thagard and Nisbett, 1982). When we have information about only a
single instance of a property pertinent to its association with another,
then none of the above criteria will provide us with a way to tell
whether the generalization is a good one. Criteria for generalizing from
a single instance, or for reasoning by analogy, must therefore be simpler
than those required for general enumerative induction. Identifying those
more specialized criteria thus seems like a good place to start in
elucidating precise rules for induction.

One approach to the analogy problem has been to regard the
conclusion as plausible in proportion to the amount of similarity that
exists between the target and the source (see Mill, 1900). Heuristic
variants of this have been popular in research on analogy in artificial
intelligence (AI) (see, e.g. Carbonell, 1983; Winston, 1980). Insofar as
these “similarity-based” methods and theories of analogy rely upon a
measure over the two cases that is independent of the conclusion to be
projected, it is easy to see that they fail to account for the differences in
plausibility among many analogical arguments. For example, in the
problem of inferring properties of an unseen red robin from those of
one already studied, the amount of similarity is fixed, namely that both
things are red robins, but we are much happier to infer that the bodily
proportions will be the same in both cases than to infer that the unseen
robin will also have a scratched beak. It is worth emphasizing that this
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is true no matter how well constructed the similarity metric is. Partly in
response to this problem, researchers studying analogy have recently
adverted to relevance as an important condition on the relation
between the similarity and the conclusion (Kedar-Cabelli, 1985; Shaw
and Ashley, 1983). However, to be a useful criterion, the condition of
the similarity P being relevant to the conclusion Q needs to be weaker
than the inheritance rule Vx P(x) = Q(x), for then the conclusion in
plausible analogies would always follow just by application of the rule
to the target. Inspection of the source would then be redundant. So a
solution to the logical problem of analogy must, in addition to provid-
ing a justification for the conclusion, also ensure that the information
provided by the source instance is used in the inference. We therefore
have the following.

THE NOi«RCDUNDANCY PROBLEM:

The background knowledge that justifies an analogy or
single-instance generalization should be insufficient to imply
the conclusion given information only about the target. The
source instance should provide new information about the
conclusion.

This condition rules out trivial solutions to the justification problem. In
particular, although the additional premise Vx P(x) = Q(x) is suffi-
cient for the validity of the inference, it does not solve the nonredun-
dancy problem and is therefore inadequate as a general solution to the
logical problem of analogy. To return to the example of Bob's and Sue’s
cars, the nonredundancy requirement stipulates that it should not be
possible, merely from knowing that Bob's car is a 1982 Mustang GLX
V6 hatchback, and having some rules for calculating current value, to
conclude that the value of Bob’s car is about $3500 — for then it would
be unnecessary to invoke the information that Sue's car is worth that
amount. The role of the source analogue (or instance) would in that
case be just to point to a conclusion which could then be verified
independently by applying general knowledge directly to Bob's car. The
nonredundancy requirement assumes, by contrast, that the information
provided by the source instance is not implicit in other knowledge. This
requirement is important if reasoning from instances is to provide us
with any conclusions that could not be inferred otherwise. As was
noted above, the rules formed in EBG-like systems are justified, but the
instance information is redundant, whereas in systems that use heu-
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ristics based on similarity to reason analogically, the conclusion is not
inferrable from prior knowledge but is also not justified after an
examination of the source.

There has been a good deal of fruitful work on different methods for
learning by analogy (e.g., Burstein, 1983; Carbonell, 1983, 1986;
Greiner, 1985; Kedar-Cabelli, 1985; Winston, 1980) in which the
logical problem is of secondary importance to the empirical usefulness
of the methods for particular domains. Similarity measures, for
instance, can prove to be a successful guide to analogizing when precise
relevance information is unavailable, and the value of learning by
chunking, EBG, and related methods should not be underestimated
either. The wealth of engineering problems to which these methods and
theories have been applied, as well as the psychological data they
appear to explain, all attest to their importance for Al In part, the
current project can be seen as an attempt to fill the gap between
similarity-based and explanation-based learning, by providing a way to
infer conclusions whose justifications go beyond mere similarity but do
not rely on the generalization being implicit in prior knowledge. In that
respect, there will be suggestions of methods for doing analogical
reasoning. The other, perhaps more important, goal of this research has
been to provide an underlying normative justification for the plausi-
bility of analogy from a logical and probabilistic perspective, and in so
doing to provide a general form for the background knowledge that is
sufficient for drawing reliable, nonredundant analogical inferences,
regardless of the method used. The approach is intended to comple-
ment, rather than to compete with, other approaches. In particular is
not intended to provide a descriptive account of how people reason by
analogv or generalize from cases, in contrast to much of the work in
cognitive psychology to date (e.g., Gentner, 1983; Gick and Holyoak,
1983). Descriptive theories may also involve techniques that are not
logically or statistically sound. The hope is that, by elucidating what
conclusions are justified, it will become easier to analyze descriptive
and heuristic techniques to see why they work and when they fail.

DETERMINATION RULES FOR GENERALIZATION
AND ANALOGICAL INFERENCE

Intuitively, it seems that a criterion that simultaneously solves both
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the justification problem and the nonredundancy problem should be
possible to give. As an example, consider again the two car owners,
Bob wnd Sue, who both own 1982 Mustang GLX V6 hatchbacks in
good condition. Bob talks to Sue and finds out that Sue has been
offered $3500 on a trade-in for her car. Bob therefore reasons that he
too could get about $3500 if he were to trade in his car. Now if we
think about Bob's state of knowledge before he talked to Sue, we can
imagine that Bob did not know and could not calculate how much his
car was worth. So Sue’s information was not redundant to Bob. At the
same time, there seemed to be a prior expectation on Bob's part that,
since Sue’s car was also a 1982 Mustang GLX V6 hatchback in good
condition, he could be relatively sure that whatever Sue had had offered
to her, that would be about the value of his (Bob's) car as well, and
indeed of any 1982 Mustang GLX V6 hatchback in good condition.
What Bob knew prior to examining the instance (Sue's car) was some
very general but powerful knowledge in a form of a determination
relation, which turns out to be a solution to the justification and
nonredundancy problems in reasoning by analogy. Specifically, Bob
knew that the make, model, design, engine-type, condition and year of
a car determine its trade-in value. With knowledge of a single deter-
mination rule such as this one, Bob does not have to memorize (or
even consult) the Blue Book, or learn a complicated set of rules for
calculating car values. A single example will tell him the value for all
cars of a particular make, model, engine, condition, and year.

In the above example, Bob's knowledge, that the make, model,
design, engine, condition, and year determine the value of a car,
expresses a determination relation between functions, and is therefore
equivalent to what would be called a “functional dependency” in
database theory (Ullman, 1983). The logical definition for function G
being functionally dependent on another function F is the following
(Vardi, 1982):

() Vx,yF(x)=F(y) = G(x)=G(y)

In this case, we say that a function (or set of functions) F functionally
determines the value of function(s) G because the value assignment for
F is associated with a unique value assignment for G. We may know
this to be true without knowing exactly which value for G goes with a
particular value for F. If the example of Bob's and Sue’s cars (Carg and
Carg respectively) from above is written in functional terms, as follows:
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Make(Carg) = Ford Make(Carg) = Ford
Model(Carg) = Mustang Model(Carg) = Mustang
Design(Carg) = GLX Design(Cary) = GLX
Engine(Carg)= V6 Engine(Carg) = V6
Condition(Carg) = Good Condition(Carg) = Good
Year(Cars) = 1982 Year(Cary) = 1982
Value(Carg) = $3500

Value(Cary) = $3500

then knowing that the make, model, design, engine,condition, and year
determine value thus makes the conclusion valid.

Another form of determination rule expresses the relation of one
predicate deciding the truth value of another, which can be written as:

(=) (VxP(x)= Q(x)) V (VxP(x) =~ Q(x))

This says that either all P's are Q's, or none of them are. Having this
assumption in a background theory is sufficient to guarantee the truth
of the conclusion Q(T) from P(S) A P(T) A Q(S), while at the
same time requiring an inspection of the source case § to rule out one
of the disjuncts. It is therefore a solution to both the justification
problem and the nonredundancy problem. We often have knowledge of
the form “P decides whether Q applies™. Such rules express our belief
in the rule-like relation between two properties, prior to knowledge of
the direction of the relation. For example, we might assume that either
all of the cars leaving San Francisco on the Golden Gate Bridge have to
pay a toll, or none of them do.

Other, more complicated formulas expressing determination rela-
tions can be represented. It is interesting to note that determination
cannot be formulated as a connective, i.e. a relation between proposi-
tions or closed formulas. Instead it should be thought of as a relation
between predicate schemata, or open formulas. In the semantics of
determination presented in the next section, even the truth value of a
predicate or schema is allowed to be a variable. Determination is then
defined as a relation between a determinant schema and its resultant
schema, and the free variables that occur only in the determinant are
viewed as the predictors of the free variables that occur only in the
resultant (the response variables). It is worth noting that there may be
more than one determinant for any given resultant. For example, one’s
zip code and capital city are each individually sufficient to determine
one's state. In our generalized logical definition of determination (see
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the section on “Representation and Semantics”), the forms (x) and (x+)
are subsumed as special cases of a single relation “P determines (",
writtenas P > Q.

Assertions of the form “P determines Q0 are actually quite common
in ordinary language. When we say “The IRS decides whether you get a
tax refund,” or “What school you attend determines what courses are
available,” we are expressing an invariant relation that reflects a causal
theory. At the same time, we are expressing weaker information than is
contained in the statement that P formally implies® Q. If P implies Q
then P determines Q, but the reverse is not true, so the inheritance
relation falls out as a special case of determination. That knowledge ~f
a determination rule or of “relevance” underlies preferred analogical
inferences seems transparent when one has considered the shortcom-
ings of alternative criteria like how similar the two cases are, or whether
the similarity together with our background knowledge logically imply
the conclusion. It is therefore surprising that even among very astute
philosophers working on the logical justifications of analogy and induc-
tion, so much emphasis has until recently been placed on probabilistic
analyses based on numbers of properties (Carnap, 1963), or on
accounts that conclude that the analogue is redundant in any sound
analogical argun.ent (e.g, Copi, 1972). Paul Thagard and Richard
Nisbett (Thagard 2nd Nisbett, 1982) speculate that the difficulty in
specifying the principles that describe and justify inductive practice has
resulted from an expectation on the part of philosophers ti.at inductive
principles would be like deductive ones in being capable of being
formulated in terms of the syntactic structure of the premises and
conclusions of inductive inferences. When, in 1953—54 Nelson Good-
man (Goodman, 1983) made his forceful argument for the importance
of background knowledge in generalization, the Carnapian program of
inductive logic began to look less attractive. Goodman was perhaps the
first to take seriously the role and form of semantically-grounded
background criteria (called by him “overhypotheses”) for inductive
inferences. The possibility of valid analogical reasoning was recognized
by Julian Weitzenfeld (Weitzenfeld, 1984), and Thagard and Nisbett
(Thagard and Nisbett, 1982) made the strong case for semantic (as
opposed to syntactic, similarity- or numerically-based) criteria for
generalization. In the process both they and Weitzenfeld anticipated the
argument made herein concerning determination rules. The history of
Al approaches to analogy and induction has largely recapitulated the
stages that were exhibited in philosophy. But the precision required for
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making computational use of determination, and for applying related
statistical ideas, gives rise to questions about the scope and meaning of
the concepts that seem to demand a slightly more formal analysis than
has appeared in the philosophical literature. In the next section, a
general form is given for representing determination rules in first order
logic. The probabilistic analogue of determination, herein called
“uniformity”, is then defined in the following section, and finally the two
notions — logical and statistical — are used in providing definitions of
the relation of “relevance™ for both the logical and the probabilistic
cases.

THE REPRESENTATION AND SEMANTICS OF DETERMINATION

To define the general logical form for determination in predicate logic,
we need a representation that covers (1) determination of the truth
value or polarity of an expression, as in example cases of the form
“P(x) decides whether or not Q(x)" (formula (++) from previous
section), (2) functional determination rules like (+) above, and (3) other
cases in which one expression in first order logic determines another.
Rules of the first form require us to extend the notion of a first order
predicate schema in the following way. Because the truth value of a first
order formula cannot be a defined function within the ianguage, let us
introduce the concept of a polar variable which can be placed at the
beginning of an expression to denote that its truth value is not being
specified by the expression. For example, the notation * iP(x)" can be
read “whether or not P(x)", and it can appear on either side of the
determination relation sign * >" in a determinaiion rule, as in

Py(x) A iy Py(x) > L Q(x).

This would be read, “P,(x) and whether or not Py(x) together jointly
determine whether or not Q (x)", where i, and i, are polar variables.

As was mentioned above, the determination relation cannot be
formulated as a connective, ie. a relation between propositions or
closed formulas. Instead, it should be thought of as a relation between
predicate schemata, or open formulas with polar variables. For a first
order language L, the set of predicate schemata for the language may be
characterized as follows. If § is a sentence (closed formula or wif) of L,
then the following operations may be applied, in order, to S to generate
a predicate schema:
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(1) Polar variables may be placed in front of any wifs that are
contained as strings in S,

(2) Any object variables in § may be unbound (made free) by
removing quantification for part of S, and

(3) Any object constants in § may be replaced by object variables.

All of and only the expressions generated by these rules are schemata
of L.

To motivate the definition of determination, let us turn to some
example pairs of schemata for which the determination relation holds.
As an example of the use of polar variables, consider the rule that,
being a student athlete, one’s school, year, sport, and whether one is
female determine who one’s coach is and whether or not one has to do
sit-ups. This can be represented as follows:

EXAMPLE I:
(Athlete(x) A Student(x) A School(x)=s
A Year(x)=y A Sport(x)=2z A i, Female(x))
>(Coach(x)=c¢ A i,Sit — ups(x)).

As a second example, to illustrate that the component schemata may
contain quantified variables, consider the rule that, not having any
deductions, having all your income from a corporate employer, and
one’s income determine one’s tax rate:

EXAMPLE 2:
(Taxpayer(x) A Citizen(x, US) A
(=3d Deductions(x, d)) A (Vilncome(i, x) =
Corporate(i)) A Personal Income(x)= p)
> (Tax Rale(x)=r).

In each of the above examples, the free variables in the component
schemata may be divided, relative to the determination rule, into a case
set x of those that appear free in both the determinant (left-hand side)
and the resultant (right-hand side), a predictor set y of those that
appear only in the determinant schema, and a response set z of those
that appear only in the resultant. These sets are uniquely defined for
each determlnatlon rule. In particular, for example 1 they are x = {x},
y=1{s » 2 i}, and z = {c, i,}; and for example 2 they are x = {x},
y={p}, z = {r}. In general, for a predicate schema £ with free
variables x and y, and a predicate schema X with free variables x
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(shared with X) and z (unshared), whether the determination relation
holds is defined as follows:

2[x, y] > X[x,2]
iff

Vy,2(3x Zx. y] A X[x,z]) = (Vx Z[x, y] = X[x,z])

For interpreting the right-hand side of this formula, quantified polar
variables range over the unary Boolean operators (negation and affir-
mation) as their domain of constants, and the standard Tarskian seman-
tics is apnlied in evaluating truth in the usual way (see Genesereth and
Nilsson, 1987). This definition covers the full range of determination
rules expressible in first order logic, and is therefore more expressive
than the set of rules restricted to dependencies between frame slots,
given a fixed vocabulary of constants. Nonetheless, one way to view a
predicate schema is as a frame, with slots corresponding to the free
variables.

USING DETERMINATION RULES IN DEDUCTIVE SYSTEMS

Determination rules can provide the knowledge necessary for an agent
or system to reason by analogy from case to case. This is desirable
when the system builds up a memory of specific cases over time. If
the case descriptions are thought of as conjunctions of well-formed
formulas in predicate logic, for instance, then questions about the target
case in such a system can be answered as follows:

(1) Identify a resultant schema corresponding to the question being
asked. The free variables in the schema are the ones to be bound
(the response variables ).

(2) Find a determination rule for the resultant schema, such that the
determinant schema is instantiated in the target case.

(3) Find a source case, in which the bindings for the predictor
variables y in the determinant schema are identical to the
bindings in the target case for the same variables.

(4) If the resultant schema is instantiated in the source case, then
bind the shared free variables x of the resultant schema to their
values in the target case’s instantiation of the determinant
schema, and bind the response variables to their values in the
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source case’s instantiation of the resultant schema. The well-
formed formula thus produced is a sound conclusion for the
target case.

Such a system might start out with a knowledge base consisting only of
determination rules that tell it what information it needs to know in
order to project conclusions by analogy, and as it acquires a larger and
larger database of cases, the system can draw more and more conclu-
sions based on its previous experience. The determination rule also
provides a matching constraint in searching for a source case. Rather
than seeking to maximize the similarity between the source and the
target, a system using determination rules looks for a case that matches
the target on predictor bindings for a determinant schema, which may
or may not involve a long list of features that the two cases must have
in common,

A second use of determination rules is in the learning of generaliza-
tions. A single such rule, for example that one’s species determines
whether one can fly or not, can generate a potentially infinite number of
more specific rules about which species can fly and which cannot, just
from collecting case data on individual organisms that includes in each
description the species and whether that individual can fly. So the
suggestion for machine learning systems that grows out of this work is
that systems be programmed with knowledge about determination
rules, from which they can form more specific rules of the form Vx P(x,
Y) = Q(x, Z). Determination rules are a very common form of
knowiedge, perhaps even more so than knowledge about strict implica-
tion relationships. We know that whether you can carry a thing is
determined by its size and weight, that a student athlete’s coach is
determined by his or her school, year, sport, and sex. In short, for
many, possibly most, outcomes about which we are in doubt, we can
name a set o functions or variables that jointly determine it, even
though we often cannot predict the outcome from just these values.

Some recent Al systems can be seen to embody the use of knowl-
edge about determination relationships (e.g., see Baker and Burstein,
1987; Carbonell, 1986; Rissland and Ashley, 1986). For example,
Edwina Rissland and Kevin Ashley's program for reasoning from
hypothetical cases in law 1epresents cases along dimensions which are,
in a loose sense, determinants of the verdicts. Likewise, research in the
psychology and theory of induction and analogy (see, e.g. Nisbett et al.,
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1983) has postulated the existence of knowledge about the “homo-
geneity” of populations along different dimensions. In all of this work,
the reality that full, indefeasible determination rules cannot be specified
for complicated outcomes, and that inany of the determination rules we
can think of have exceptions to them, has prompted a view toward
weaker relations of a partial or statistical nature (Russell, 1986), and to
determination rules that have the character of defaults (Russell and
Grosof, 1987). The extension of the determination relation to the
statistical case is discussed in the next section on uniformity.

A third use of determination rules is the representation of knowledge
in a more compact and general form than is possible with inheritance
rules. A single determination rule of the form P(x, y) > Q(x, z) can
replace any number of rules of the form Vx P(x, Y) = Q(x, Z) with
different constants Y and Z. Instead of saying, for instance, “Donkeys
can’t fly," “Hummingbirds can fly,” “Giraffes can’t fly,” and so forth,
we can say “One’s species determines whether or not one can fly,” and
allow cases to build up over time to construct the more specific rules.
This should ease the knowledge acquisition task by making it more
hierarchical.

UNIFORMITY: THE STATISTICAL ANALOGUE
OF DETERMINATION

The problem of finding a determining set of variables for predicting the
value of another variable is similar to the problem faced by the applied
statistician in search of a predictive model. Multiple regression, analysis
of variance, and analysis of covariance techniques all involve the
attempt to fit an equational model for the effects of a given set of
independent (predictor) variables on a dependent (response) variable
or vector (522 Johnson and Wichern, 1982; Montgomery and Peck,
1982). In each case some statistic can be defined which summarizes
that proportior: of the variance in the response that is explained by the
model (e.g. multiple R, w?). In regression, this statistic is the square of
the correlation between the observed and model-predicted values of the
response variables, and is, in fact, often referred to as the “coefficient of
determination” (Johnson and Wickern, 1982). When the value of such a
statistic is 1, the predictor variables clearly amount to a determinant for
the response variable. They are, in such cases, exhaustively relevant to
determining its value in the same sense in which a particular schema
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determines a resultant in the logical case. But when the proportion of
the variance explained by the model is less than 1, it is often difficult to
say whether the imperfection of the model is that there are more
variables that need to be added to determine the response, or that the
equational form chosen (linear, logistic, etc.) is simply the wrong one. In
low dimensions (one or two predictors), a residual plot may reveal

structure not captured in the model, but at higher dimensions this is not °

really possible, and the appearance of randomness in the residual plot
is no guarantee in any case. So, importantly, the coefficient of deter-
mination and its analogues measure not the predictiveness of the
independent variables for the dependents, but rather the predictiveness
of the model. This seems to be an inherent problem with quantitative
variables.

If one considers only categorical data, then it is possible to assess the
predictiveness of one set of variables for determining another. However
there are multiple possibilities for such a so-called “association meas-
ure”, In the statistics literature one finds three types of proposals for
such a measure, that is, a measure of the dependence between variables
in a k-way contingency table of count data. Firstly, there are what have
been termed “symmetric measures” (see Haberman, 1982; Hays and
Winkler, 1970) that quantify the degree of dependence between two
variables, such as Pearson’s index of mean square contingency (Hays
and Winkler, 1970). Secondly, there are “predictiveness” measures,
such as Goodman and Kruskal's 4 (Goodman and Kruskal, 1979),
which quantify the proportional reduction in the probability of error, in
estimating the value of one variable (or function) of an individual, that
is afforded by knowing the value of another. And thirdly, there are
information theoretic measures (e.g. Theil, 1970) that quantify the
average reduction in uncertainty in one variable given another, and can
be intepreted similarly to the predictive measures (Hays and Winkler,
1970). In searching for a statistic that will play the rule in probabilistic
inference that is played by determination in logic, none of these three
types of association measure appear to be what we are looking for. The
symmetric measures can be ruled out immediately, since determination
is not a symmetric relation. The predictive and information theoretic
measures quantify how determined a variable is by another relative to
prior knowledge about the value of the dependent variable. While this
is a useful thing to know, it corresponds more closely to what in this
paper is termed “relevance” (see next section), or the value of the
information provided by a variable relative to what we already know.
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Logical determination has the property that a schema can contain some
superfluous information and still be a determinant for a given outcome;
that is, information added to our knowledge when something is deter-
mined does not change the fact that it is determined, and this seems to
be a useful property for the statistical analogue of determination to
have.

So a review of existing statistical measures apparently reveals no
suitable candidates for what will hereinafter be called the uniformity of
one variable or function given the value of another, or the statistical
version of the determination relation. Initially we might be led simply to
identify the uniformity of a function G given another function F with
the conditional probability:

Pr{Gx)=G(»)|F(x)=F(y)}

for randomly select pairs x and y in our population. Similarly, the
uniformity of G given a particular value (property or category) P might
defined as:

PriGx)y=GyIP(x) A P(»)},

and permutations of values and variables in the arguments to the
uniformity function could be defined along similar lines. This possibility
is adverted to by Thagard and Nisbett (Thagard and Nisbett, 1982),
t ough they are not concerned with exploring the possibility seriously.
If \he uniformity statistic is to underlie our confidence in a particular
value of G being shared by additional instances that share a particular
value of F, where this latter value is newly observed in our experience,
then it seems that we will be better off, in calculating the uniformity of
G given F, if we conditionalize on randomly chosen values of F, and
then measure the probability of a match in values for G, rather than
asking what is the probability of a match on G given a match on F for
a randomly chosen pair of elements in our past experience, or in a
population.

An example should illustrate this distinction and its importance. If
we are on a desert island and run across a bird of a species unfamiliar
to us (say, “shreebles,” to use Thagard and Nisbett's term) and we
further observe that this bird is green, we want the uniformity statistic
to tell us, based on our past experience or knowledge of birds, how
likely it is that the next shreeble we see will also be green. Let us say,
for illustration, that we have experience with ten other species of birds,
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and that among these species nine of them are highly uniform with
respect to color, but the other is highly varying. Moreover, let us
assume that we have had far greater numerical exposure to this tenth,
highly variable species, than to the others, or that this species (call them
“variabirds”) is a lot more numerous generally. Then if we were to
define uniformity as was first suggested, sampling at random from our
population of birds, we would attain a much lower value for uniformity
than if we average over species instead, for in the latter case we would
have high uniformities for all but one of our known species and
therefore the high relative population of variabirds would not skew our
estimate. Intuitively the latter measure, based on averaging over species
rather than individuals in the conditional, provides a better estimate for
the probability that the next shreeble we see will be green. The
important point to realize is that there are multiple possibilities for such
a statistic, and we should choose the one that is most appropriate for
what we want to know. For instance, if the problem is to find the
probability of a match on color given a match on species for randomly
selected pairs of birds, then the former measure would clearly be better.
Another factor that plays in the calculation when we average over
species is the relative confidence we have in the quality of each sample.
i.e. the sample size for each value of F. We would want to weigh more
heavily (by some procedure that is still to be specified) those values for
which we have a good sample. Thus the uniformity statistic for esti-
mating the probability of a match given a new value of F would be the
weighted average,

U(G|F)=—})- ),i w, Pr{G(x)= G(y)| F(x)= F()}= P},

where p is the number of values P, of F for which we have observed
instances and also know their values for G. In the absence of informa-
tion about the relative quality of the samples for different values of F,
all of the weights w, would equal 1.

How might we make use of such a statistic i learning and reason-
ing? Its value is that, under the assumption that the uniformity of the
function given another can be inferred by sampling, we can examine a
relatively small sample of a population, tabulate data on the subsets of
values appearing in the sample for the functions in question, and
compute an estimate of the extent to which the value of one function is
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determined by the other. This will in turn tell us what confidence we
can have in a generalization or inference by analogy based on a value
for a predictor function (variable) co-occurring with a value for a
response function, when either or both have not been observed before.
The experience of most people in meeting speakers of foreign languages
provides a good example. In the beginning, we might think, based on
our early data, that one's nationality determines one’s native language.
But then we come across exceptions — Switzerland, India, Canada. We
still think that native language is highly uniform given nationality,
however, because its conditional uniformity is high. So in coming across
someone from a country with which we are not familiar, we can assume
that the probability is reasonably high that whatever language he or she
speaks is likely to be the language that a randomly selected other
person from that country speaks.”

RELEVANCE: LOGICAL AND STATISTICAL DEFINITIONS
FOR THE VALUE OF INFORMATION

The concepts of determination and uniformity defined above can be
used to help answer another common question in learning and problem
solving. Specifically, the question is, how should an agent decide
whether to pay attention to a given variable? A first answer might be
that one ~\ght to attend to variables that determine or suggest high
uniformity for a given outcome of interest. The problem is that both
determination and uniformity fail to tell us whether a given variable is
necessary for determining the outcome. For instance, the color of
Smirdley’s shirt determines how many steps the Status of Liberty has.
as determination has been defined, because the number of steps
presumably does not change over time. As another example, one's zip
code and how nice one's neighbors are determine what state one lives
in, because zip code determines state. This property for determination
and uniformity is useful because it ensures that superfluous facts will
not get in the way of a sound inference. But when one’s concern is what
information needs to be sought or taken into account in determining an
outcome, the limits of resource and time dictate that one should pay
attention only to those variables that are relevant to determining it.

The logical relation of relevance between two functions F and G
may be loosely defined as follows: F is relevant to determining G if and
only if F is a necessary part of some determinant of G. In particular, let
us say that
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F is relevant to determining G iff there is some set of
functions D such that (1) F €D, (2)D > G.and (3) D —
| F} does not determine G.*

We can now ask, for a given determinant of a function, which part of it
is truly relevant to the determination, and which part gives us no
additional information. Whether or not a given function has value*
to us in a given situation can thus be answered from information
about whether it is relevant to a particular goal. Relevance as here
defined is a special case of the more general notion because we have
used only functional determination in defining it. Nonetheless, this
restricted version captures the important properties of relevance. Devika
Subramanian and Michael Genesereth (1987) have recently done work
demonstrating that knowledge about the irrelevance of, in their exam-
ples, a particular proposition, to the solution of a logical problem, is
useful in reformulating the problem to a more workable version in
which only the aspects of the problem description that are necessary to
solve it are represented. In a similar vein, Michael Georgeff has shown
that knowledge about independence among subprocesses can eliminate
the frame problem in modeling an unfolding process for planning
(Georgeff, 1987). Irrelevance and determination are dual concepts, and
it is interesting that knowledge in both forms is important in reasoning.

Irrelevance in the statistical case can, on reflection, be seen to be
related to the concept of probabilistic independence. In probability
theory. an event A is said to be independent of an event B iff the
conditional probability of A given B is the same as the marginal
probability of A. The relation is symmetric. The statistical concept of
irrelevance is a symmetric relation as defined in this paper. The
definition is the following:

Fs (statistically) irrelevant 1o determining G iff
U{G(x)= G () F(x)=F(y)} = PriG(x)=G(»)}

That is. F is irrelevant to G if it provides no information about the
value of G. For cases when irrelevance does not hold, one way 1o
define the relevance of Fto G is as follows:

R(F, G) = U{G(x) = G()IF@)= F()} = Pr{Gw) =
Gl
That is, relevance is the absolute value of the change in one’s informa-
tion about the value of G afforded by specifying the value of F. Clearly.
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if the value of G is known with probability 1 prior to inspection of F
then F cannot provide any information and is irrelevant. If the prior is
between 0 and 1, however, the value of F may be highly relevant to
determining the value of G. It should be noted that relevance has been
defined in terms of uniformity in the statistical case, just as it was
defined in terms of determination in the logical case. The statistic of
relevance is more similar to the predictive association measures men-
tioned in the last section for categorical data than is the uniformity
statistic. As such it may be taken as another proposal for such a
measure. Relevance in the statistical case gives us a continuous measure
of the value of knowing a particular function, or set of functions, or of
knowing *hat a property holds of an individual, for purposes of
determining another variable of inteiest. Knowledge about the relevance
of variables can be highly useful in reasoning. In particular, coming up
with a set of relevant functions, variables, or values for determining an
outcome with high conditional uniformity should be the goal of an agent
when the value of the outcome must be assessed indirectly.

CONCLUSION

The theory presented here is intended to provide normative justifica-
tions for conclusions projected by analogy from one case to another,
and for generalization from a case to a rule. The lesson is not that
techniques for reasoning by analogy must involve sentential representa-
tions of these criteria in order to draw reasonable conclusions. Rather it
is that the soundness of such conclusions, in either a logical or a
probabilistic sense, can be identified with the extent to which the
corresponding criteria (determination and uniformity) actually hold for
the features being related. As such it attempts to answer what has to be
true of the world in order for generalizations and analogical projections
to be reliable, irrespective of the techniques used for deriving them.
That the use of determination rules without substantial heuristic control
knowledge may be intractable for systems with large case libraries does
not therefore mean that determination or uniformity criteria are of no
use in designing such systems. Rather, these criteria provide a standard
against which practical techniques can be judged on normative grounds.
At the same time, knowledge about what information is relevant for
drawing a conclusion, either by satisfying the logical relation of rele-
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vance or by being significa~tly relevant in the probabilistic sense, can
be used to prune the factors that are examined in attempting to
generalize or reason by analogy.

As was mentioned earlier, logic does not prescribe what techniques
will be most useful for building systems that reason by analogy and
generalize successfully from instances, but it does tell us what problem
such techniques should solve in a tractable way. As such, it gives us
what David Marr (1982) called a “computational theory” of case-based
reasoning, that can be applied irrespective of whether the (in Marr's
terms) “algorithmic” or “implementational” theory involves theorem
proving over sentences (Davies and Russell, 1987) or not. A full
understanding of how analogical inference and generalization can be
performed by computers as well as it is performed by human beings
will surely require further investigations into how we measure simi-
larity, how situations and rules are encoded and retrieved, and what
heuristics can be used in projecting conclusions when a valid argument
cannot be made. But it seems that logic can tell us quite a lot about
analogy, by giving us a standard for evaluating the truth of its conclu-
sions. a general form for its justification, and a language for distin-
guishing it from other forms of inference. Moreover, analysis of the
logical problem makes clear that an agent can bring background
knowledge to bear on the episodes of its existence, and soundly infer
from them regularities that could not have been inferred before.
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NOTES

! Sec the essay by Stuart Russell elsewhere in this volume.

% The term ‘formal implication® is due to Bertrand Russell and refers to the relation
between predicates P and Q in the inheritance rule YxP(x) = Q(x).

¥ 1 am indebted to Stuart Russell for this example, and for the suggestion of the
term ‘uniformity’.

4 This definition can easily be augmented to cover the relevanc, ~“ sers of func-
tions, and values, to others.

¥ *Value' as used here refers only to usefulness for purposes of inference.
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Abstract

We analyze the logical form of the domain knowledge that grounds analogical
inferences and generalizations from a single instance. The form of the assumptions
which justify analogies is given schematically as the “determination rule”, so called
because it expresses the relation of one set of variables determining the values of
another set. The determination relation is a logical generalization of the different
types of dependency relations defined in database theory. Specifically, we define
determination as a relation between schemata of first order logic that have two
kinds of free variables: (1) object variables and (2) what we call “polar” variables,
which hold the place of truth values. Determination rules facilitate sound rule
inference and valid conclusions projected by analogy from single instances, without
implying what the conclusion should be prior to an inspection of the instance.
They also provide a way to specify what information is sufficiently relevant to
decide a question, prior to knowledge of the answer to the question.




1 Introduction to the Problem

In this paper we consider the conditions under which propositions inferred by analogy
are true or sound. As such, we are concerned with normative criteria for analogical
transfer rather than a descriptive or heuristic theory. The goal is to provide a reliable,
programmable strategy that will enable a system to draw conclusions by analogy only
when it should.

Reasoning by analogy may be defined as the process of inferring that a conclusion
property @ holds of a particular situation or object T' (the target) from the fact that T
shares a property or set of properties P with another situation/object S {the source)
that has property @. The set of common properties P is the similarity between S and
T, and the conclusion property @ is projected from S onto T'. The process may be
summarized schematically as follows:

P(S)AQ(S)
P(T)
Q(T).

This form of argument is nondeductive, in that its conclusion does not follow syn-
tactically just from its premises. Instances of this argument form vary greatly in
cogency. Bob’s car and John’s car share the property of being 1982 Mustang GLX V6
hatchbacks, but we could not infer that Bob’s car is painted red just because John’s
car is painted red. The fact that John’s car is worth about $3500 is, however, a good
indication that Bob’s car is worth about $3500. In the former example, the inference
is not compelling; in the latter it is very probable, but the premises are true in both
examples. Clearly the plausibility of the conclusion depends on information that is not
provided in the premises. So the justification aspect of the logical problem of analogy,
which has been much studied in the field of philosophy (see, e.g. [5], [13], [16], [31]),
may be defined as follows:

THE JUSTIFICATION PROBLEM:

Find a criterion which, if satisfied by any particular analogical inference,
sufficiently establishes the truth of that inference.

Specifically, we take this to be “e task of specifying background knowledge that, when
added to the premises of the anatogy, makes the conclusion follow soundly.

It might be noticed that the analogy process defined above can be broken down
into a two-step argument as follows: (1) From the first premise P(S)A Q(S), conclude
the generalization Ve P(z) = Q(z), and (2) instantiate the generalization to T and
apply modus ponens to get the conclusion @(T). In this process, only the first step is
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nondeductive, so it looks as if the problem of justifying the analogy has been reduced
to the problem of justifying a single-instance inductive generalization. The traditional
criteria for evaluating the cogency of enumerative induction, however, tell us only
that the inference increases in plausibility as the number of instances confirming the
generalization increases (without counter-examples) and is dependent on the conclusion
property being “projectible” (see [11]). If this is the only criterion applied to analogical
inferences, then all projectible conclusions by analogy without counter-examples should
be equally plausible, which is not the case. For example, if inspection of a red robin
reveals that its legs are longer than its beak, a projection of this conclusion onto unseen
red robins is plausible, but projecting that the scratch on the first bird’s beak will be
observed on a second red robin is implausible. A person who has looked closely at
the beak of only one red robin will have no counter-examples to either conclusion,
and both conclusion properties are projectible, so the difference in cogency must be
accounted for by some other criterion. The problem of analogy is thus distinct from
the problem of enumerative induction because the former requires a stronger criterion
for plausibility.

Cne approach to the analogy problem has béen to regard the conclusion as plausible
in proportion to the amount of similarity that exists between the target and the source
(see19]). Heuristic variants of this have been popular in research on analogy in Al
(see, e.g. [3] and [32]). Such similarity-based methods, although intuitively appealing,

suffer from some serious drawbacks. Consider again the problem of inferring properties

of an unseen red robin from those of one already studied: the amount of similarity is
fixed, namely that both things are red robins, but we are much happier to infer that the
bodily proportions will be the same in both cases than to infer that the unseen robin
will also have a scratched beak. In other words, the amount of similarity is clearly
an insufficient guide to the plausibility of an analogical inference. Recognizing this,
researchers studying analogy have adverted to relevance as an important condition on
the relation between the similarity and the conclusion ([15], [27]).

To be a useful criterion, the condition of the similarity P being relevant to the
conclusion @ needs to be weaker than the rule Yz P(z) = Q(z), for otherwise the
conclusion in plausible analogies would always follow just by application of the rule
to the target. Inspection of the source would then be redundant. So a solution to
the logical problem of analogy must, in addition to providing a justification for the
conclusion, also ensure that the information provided by the source instance is used in
the inference. We therefore have the following:

THE NON-REDUNDANCY PROBLEM:

The background knowledge that justifies an analogy or single-instance gen-
eralization should be insufficient to imply the conclusion given information
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only about the target. The source instance should provide information not
otherwise contained in the database.

This condition rules out trivial solutions to the justification problem. In particular,
though the additional premise V& P(z) = Q(z) is sufficient for the truth of the infer-
ence, it does not solve the non-redundancy problem and is therefore inadequate as a
general solution to the logical problem of analogy. To return to the example of Bob’s
and John's cars, the non-redundancy requirement stipulates that it should not be pos-
sible, merely from knowing that John’s car is a 1982 Mustang GLX V6 hatchback and
some rules for calculating current value, to conclude that the value of John’s car is
about $3500-for then it would be unnecessary to invoke the information that Bob’s
car is worth that amount. The role of the source analogue (or instance) would in that
case be just to point to a conclusion which could then be verified independently by
applying general knowledge directly to John’s car. The non-redundancy requirement
assumes, by contrast, that the information provided by the source instance is not im-
plicit in other knowledge. This requirement is important if reasoning from instances
is to provide us with any conclusions that could not be inferred otherwise.

This seems like an opportune place to draw a distinction between this work and
that.of many others researching analogy. There has been a good deal of fruitful work
on different methods for learning by analogy ([1], [2], [3], [10], [12], [15], [32]), in
which the logical problem is of secondary importance to the empirical usefulness of
the methods for particular domains. Similarity measures, for instance, can prove to
be a successful guide to analogizing when precise relevance information is unavailable
([24]). However, when studying any form of inference, it behooves the researcher to
at least consider what the basis of the inference process might be; for the most part
such consideration has been lacking, with the result that analogy systems have yet to
demonstrate any wide applicability or reliable performance. Our project is to provide
an underlying justification for the plausibility of analogy from a logical perspective,
and in so doing to provide a way to specify background knowledge that is sufficient
for drawing reliable analogical inferences. The approach is intended to complement,
rather than to compete with, more heuristic methods.

2 Determination Rules as a Solution

If we think about the example of the two cars (Bob’s and John’s), it seems clear that,
while we may not know what the value of a 1986 Mustang GLX V6 hatchback is prior
to knowing the value of Bob’s car, we do know that the fact that a car is a Mustang
GLX V6 hatchback is sufficient to deiermine its value. Abstractly, we know that either
all objects with property P also have property @, or that none do:

(%) (Yz P(z) = Q(z)) V (VzP(z) = -Q(z)).




Having this assumption in a background theory is sufficient to guarantee the truth of
the conclusion Q(T) from P(S) A P(T) A Q(S) while at the same time requiring an
inspection of the source S to rule out one of the disjuncts. It is therefore a solution to
both the justification problem and the non-redundancy problem.

As a way of describing the relation between P and @ in the above disjunction,
we might say that P decides whether @ is true for any situation z. Of course, one
might notice that the background knowledge we bring to the car example is more
general in form. Specifically, we have knowledge of what is called in database theory a
“dependency” relation ([28]), that the make, model, design, engine, condition, and year
of a car determine its current value. Abstractly, a functional dependency is defined as
follows ([29]):

(=) Vz,yF(z) = F(y) = G(z) = G(y).

In this case, we say that a function (or set of functions) i functionally determines
the value of function(s) G because the value assignment for F is associated with a
unique value assignment for G. We may know this to be true without knowing exactly
which value for G goes with a particular value for F. A taxonomy of the forms for
the relation “F(z) determines G(z)” has been worked out by researchers in database
theory, in which such dependencies are used as integrity constraints ([28]). If the
example of Bob’s and John’s cars (Carp and Car; respectively) from above is written
in functional terms, as follows:

Make(Carp) = Ford A Make(Cary) = Ford
Model(Carp) = Mustang A Model(Cary) = Mustang
Design(Carg) = GLX A Design(Cary) = GLX
Engine(Carp) = V6 A Engine(Cary) = V6
Condition(Carg) = Good A Condition(Cary) = Good
Year(Carg) = 1982 A Year(Cary) = 1982
Value(Carg) = $3500

Value(Cary) = $3500,

then knowing that the make, model, design, engine, condition, and year determine
value thus makes the conclusion valid. In our generalized logical definition of deter-
mination (see the section on “Representation and Semantics”), the forms (*) and (**)
are subsumed as special cases of a single relation “P determines Q”, written as P > Q.

Assertions of the form “P determines @” are actually quite common in ordinary
language. When we say “The IRS decides whether you get a tax refund”, or “What
school you attend determines what courses are available”, or, quoting a recent television
advertisement, “It’s when you start to save that decides where in the world you can




retire to”, we are expressing an invariant relation more complicated than a purely
implicational rule. At the same time, we are expressing weaker information than is
contained in the statement that P implies Q. If P implies Q then P determines @,
but the reverse is not true, so traditional implication falls out as a special case of
determination. That the knowledge of a determination rule is what underlies preferred
analogical inferences seems relatively transparent once the problem is set up as we
have done. We therefore find it surprising that only recently has the possibility of valid
reasoning by analogy been recognized (in (30]) and the logical form of its justification
been worked out in a way that solves the non-redundancy problem (in [6]). Most
research on analogy and generalization seems to have assumed that an instance can
provide at most inductive support for a rule. Our work suggests that rule formation
and analogical projection are better viewed as being guided by higher level domain
knowledge about what sorts of generalizations can be inferred from an instance. This
perspective seems consistent with more recent Al techniques for doing induction and
analogy (e.g. [14), [15]) which view such inferences as requiring specific knowledge
about relevance rather than just an ability to evaluate similarity. We have concentrated
on making the relevance criterion deductive.

3 -Representation and Semantics

To define the general logical form for determination in predicate logic, we need a repre-
sentation that covers (1) determination of the truth value or polarity of an expression,
as in example cases of the form “P(z) decides whether or not Q(z)” (formula (*) from
previous section), (2) functional determination rules like (**) above, and (3) other
cases in which one expression in first order logic determines another. Rules of the first
form require us to extend the notion of a first order predicate schema in the following
way. Because the truth value of a first order formula cannot be a defined function
within the language, we introduce the concept of a polar variable, which can be placed
at the beginning of an expression to denote that its truth value is not being specified
by the expression. For example, the notation “i P(z)” can be read “whether or not
P(z)”, and it can appear on either side of the determination relation sign “>” in a
determination rule, as in
Pi(z) A ile(m) > 12Q(2).

This would be read, “Pj(z) and whether or not Py(z) together jointly determine
whether or not Q(z),” where #; and ¢, are polar variables.

The determination relation cannot be formulated as a connective, i.e., a relation
between propositions or closed formulas. Instead, it shouid be thought of as a reiation
between predicate schemata, or open formulas with polar variables. For a first order
language L, the set of predicate schemata for the language may be characterized as




follows. If S is a sentence (closed formula or wff) of L, then the following operations
may be applied, in order, to S to generate a predicate schema:

1. Polar variables may be placed in front of any wifs that are contained as strings

in S,

2. Any object variables in Smay be unbound (made free) by removing quantification
for any part of S, and

3. Any object constants in S may be replaced by object variables.

All of and only the expressions generated by these rules are schemata of L.

To motivate the definition of determination, let us turn to some example pairs of
schemata for which the determination relation holds. As an example of the use of polar
variables, consider the rule that, being a student athlete, one’s school, year, sport, and
whether one is female determine who one’s coach is and whether or not one has to do
sit-ups. This can be represented as follow.s:

EXAMPLE 1:

(Athlete(z) A Studeni(z) A School(z) = s A Year(z) = y A Sport(z) =
z A iy Female(z))
> (Coach(z) = ¢ A i25:t — ups(z)).

As a second example, to illustrate that the component schemata may contain quantified
variables, consider the rule that, not having any deductions, having all your income
from a corporate employer, and one’s income determine one’s tax rate:

EXAMPLE 2:

(Tazpayer(z) A Citizen(x,US)A
(-3d Deductions(z,d)) A (Vi Income(i, x) =
Corporate(i)) A PersonalInceme(z) = p)

> (Taz Rate(z) = r).

In each of the above examples, the free variables in the component schemata may
be divided, relative to the determination rule, into a case set z of those that appear
free in both the determinant (left-hand side) and. the resultant (right-hand side), a
predictor set y of those that appear only in the determinant schema, and a response
set z of those that appear only in the resultant.!. These sets are uniquely defined for
each determination rule. In particular, for example 1 they are z = {2z}, y = {s,9,2,01},
and z = {¢,42}; and for example 2 they are z = {z}, y = {p}, and z = {r}. In general,

1Readers familiar with statistical modeling might notice that the terms for these sets of variables
are borrowed from regression analysis. For a discussion of the statistical analogue of determination,
and its relations to regression and classificiation, see [7]




for a predicate schema X with free variables £ and y, and a predicate schema X with
free variables z (shared with £) and z (unshared), whether the determination relation
holds is defined as follows:

THE DEFINITION OF DETERMINATION:

Iz, y] - X(z,z]
iff
Vy,2(3z Bz, y] A X[z, 2]) = (V2 Z(z, 3] = X[z, 2]).

In interpreting this formula, quantified polar variables range over the unary Boolean
operators (negation and affirmation) as their domain of constants, and the standard
Tarskian s2mantics is applied in evaluating truth in the usual way (see [9]). This
definition covers the full range of determination rules expressible in first order logic, and
is therefore more expressive than the set of rules restricted to dependencies between
frame slots, given a fixed vocabulary of constants. Nonetheless, one way to view a
predicate schema is as a frame, with slots corresponding to the free variables.

4 “Use in Reasoning

Much of the work in machine learning, from the early days when Shakey was learn-
ing macro-operators for action ([21]) to more recent work on chunking ([22]) and
explanation-based generalization ([20]), has involved getting systems to learn and rep-
resent explicitly rules and relations between concepts that could have been derived
from the start. In Shakey’s case, for example, the planning algorithm and knowledge
about operators in STRIPS were a sufficient apparatus for deriving a plan to achieve
a given goal. To say that Shakey “learned” a specific sequence of actions for achieving
the goal means only that the plan was not derived until the goal first arose. Like-
wise, in EBG, explaining why the training example is an instance of a concept requires
knowing beforehand that the instance embodies a set of conditions sufficient for the
concept to apply, and chunking, despite its power to simplify knowledge at the appro-
priate level, does not in the logician’s terms add knowledge to the system. By defining
determination rules prior to the acquisition of case data, we can enable the system to
generalize appropriately without making the rules it will generate implicit from the
start.

Determination rules are the kind of knowledge that programmers of an intelligent
system often have. We may not know very many specific rules about which coaches
instruct which teams, but we still know that the latter determines the former, and this
knowledge has the potential to generate an infinite number of more fine-grained rules.
In addition to enhancing the power of intelligent systems, the logical formulation of
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analogical inference enables it to be used reliably in the logic programming and expert
system contexts. A logic programming implementation is described in the next section.
Determination rules may be useful in knowledge engineering for two reasons:

1. In many domains a strong (implicational) theory may not be available, whereas
determination rules can be provided, and the system can gain expertise through
the acquisition of examples from which it can reason by analogy.

2. Even when a strong theory is available, its complete elucidation may be difficult,
and it may be easier to elicit knowledge using questions of the form “What are the
factors which go into making decisions about Q?”, i.e., to extract determination
rules.

The use of determination rules appears to be a natural stage in the process of
knowledge acquisition, occurring prior to the acquisition of a strong predictive theory;
for example, we have as yet no theory that can even come close to predicting the vo-
cabulary, grammar and usage of an entire language simply from facts about the nation
it belongs to, but we still Lave tle corresponding determination rule that one's nation-
ality defer.oines one’s native language, with a few exceptions. We have been building
a list. ot uifferent categories of determinative knowledge. Here are some examples of
processes in which determination rules are found:

o Physical processes: initial conditions determine outcome; boundary conditions
determine steady-state values for whole system; biological ancestry determines
gross physical structure; developmental environment determines fine structure
of behavior; structure determines function; function determines structure (less
strongly); disease determines symptoms; symptoms determine disease (less well);
diet, exercise and genes determine weight; etc.

o Processes performed by “rational agents”: case description determines legal out-
come; upbringing and education determine political leaning; social class and
location determine buying patterns; nationality determines language; zip code
determines state; address determines newspaper delivery time; etc.

o Processes in formal systems: program input determines program output; program
specification determines program; etc.

o The system’s own problem-solving processes: all the problem solving abilities
the system has, be they planning, search, inference, programming or whatever,
can be analyzed into an input P and an output Q. Constructive processes, such
as planning and design, which have enormous search spaces, are particularly
amenable to reasoning by analogy. ([4] begins to address these issues, implicitly
using the determination rule that (exact) problem specificatic 1 determines so-
lution; the key issue to be resolved before such work can succeed is to identify




the various abstracted levels of description for problems and solutions which will
allow use of less specific determination rules that do not require exact matching
of specifications.)

5 Implementation in a Logic Programming System

Determination-based analogical reasoning can be implemented directly as an extension
to a logic programming system, such as Genesereth’s MRS system (see [23]). The
programmer simply adds whatever determination rules are available to the database
and the system will use them whenever possible to perform analogical reasoning.

Given a query X{T), 2], the basic procedure for solving it by analogy is as follows:
1. Find 2 such that Z[z,y] > X[z, 2] (i.e., decide which facts could be relevant).
2. Find y such that [T, y] (i.e., see how those facts are instantiated in the target).
3. Find S such that Z[S,y} and § # T (i.e., find a suitable source).

4-Find z such that X[, z] (i.e., find the answer to the query from the source).

5. Return z as the solution to the query X[T',z].

We add this procedure to the system’s recursive routine for solving a goal, so that
it now has three alternatives:

1. Look up the answer in the database.
2. Backchain on an applicable irﬁplication rule.

3. Analogize using an applicable determination rule.

To solve goal X [T, 2] using determination rule Xz, y] > X|z, 2], we simply add the
following conjunctive goal to the agenda:

Sty A Bls, Y] A (s # 1) A X3, 2]

The subgoals of this can be solved recursively by the same three alternative methods,
thus achieving the procedure given above.

An example may be helpful here. Suppose we have the goal of finding out what lan-
guage Jack speaks, i.e., NativeLanguage(Jack,z). We have the following background
information:
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Nationality(Jack,UK)
Male(Jack)
Height(Jack,6")

Nationality(Giuseppe, Italy)
Male(Giuseppe)
Height(Giuseppe,6')
NativeLanguage(Giuseppe, Italian)

Nationality(Jill,UK)
Female(Jill)
Height(Jill,5'10")
NativeLanguage(Jill, English)

and among our determination rules we have that nationality determines native lan-
guage (except for Swiss), as well as other such rules, for instance that nationality and
whether or not one has dual citizenship determines whether or not one needs a visa to
enter the United States and how long one may stay:

(Nationality(z,n) A =N ationality(z, Swiss))
> (NativeLanguage(z,1).
(Nationality(z,n) A iy Dualcitizen(z,US))
> (12NeedVisa(z,US) A Mazstay(z,t)).

Using the first of these determination rules, the system generates the new goal:

(Nationality(Jack,n)A

- Nationality(Jack, Swiss))A
(Nationality(s,n) A “Nationality(s, Swiss))A
s # JackA
NativeLanguage(s, z),

which is solved after a few simple deduction steps, with Jill as the source s. One may
observe that the more “similar” source Giuseppe is ignored, and that the irrelevant
facts about Jack and Jill are not examined. When the facts satisfying the various
subgoals of the analogy are not explicitly available in the database, the system will of
course attempt solutions by further reasoning, either analogical or implicational. For
example, if Nationality(Jill, UK) were replaced by Birthplace(Jill, London), then
the analogy could still succeed if a rule relating Birthplace and Nationality were
available. Thus we have a natural, goal-directed reformulation which reve U5 implici

similarities in an efficient manner.

>
o

In comparison to the more traditional, heuristic approaches to analogy, the use
of determination rules has significant efficiency advantages in addition to its other
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properties. Winston ([32]) and Greiner (*2]) point out the enormous complexity of
matching the target against all possible sources in all possible ways to find out the
most similar source; as we observed in the implementation example, finding the de-
termination rule first enables us to pick out the relevant target facts and use those to
index directly to an appropriate source, thus overcoming the matching problem. We
also render irrelevant the problem of finding a suitable similarity metric, and transform
the reformulation problem (which arises when a change of representation might reveal
a previously hidden similarity) from an open-ended nightmare of forward inference into
a relatively controlled, goal-directed process.

The ability of determination-based analogical reasoning to avoid unnecessary match-
ing makes it a reasonable alternative to traditional rule-based logic systems. For some
problems, analogy is more efficient than using a corresponding set of implication rules.
A determination rule P(z,y) > Q(z,z2) and a set of instances replace a set of implica-
tion rules:

Vz P(z,Y1) = Q(z,%,)

\z P(z,Y,) = Q(z, Z,),

where n can be arbitrarily large. Furthermore, since it must test the premises of every
rule that could imply a goal until it finds the right one, a backward chaining system
requires a lengthy search that can be avoided by using a determination rule.

A common form of reasoning that displays this behavior is taxonomic inheritance,
for which we might use a rule such as

Ve IsA(z,73DodgeVan) = ValueIn87(z,$650)

to conclude the current resale value of one of our cars. With 7500 models in our
database, this would take us 7500/2 backchains on average. Replacing the implication
rules with a determination rule I'sA(z,y) > ValueIn86(z,2) and a collection of proto-
typical instances (exactly analogous to the TypicalElephant frames in semantic nets)
we can solve our goal in four backchaining steps.

Another example is that of diagnostic reasoning, in which the (simplified) tradi-
tional approach uses a collection of rules of the form:

Vz HasSymptoms(z,< Symptom — listy >)
= HasDisease(z, < Disease; >).

These implication rules would be replaced by a determination rule HasSymptoms(z,y) >
HasDisease(z,z) and a case library.
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6 Conclusion

There are a number of problems related to analogy that we have not solved. What we
have is a method for generating correct generalizations and analogical inferences, given
correct determination rules. At the same time, our work has created new problems: a
reasonable next step is to work out how determination rules can themselves be acquired.
Some early thought on the determination rule acquisition problem points to four basic
methods:

1. Deduce a determination rule from other known facts (For an example, see [26]).

2. Induce a determination rule from instances (essentially calculate the empirical
degree of determination of X by —see and (7], (25]).

3. Induce a determination rule from a collection of specific rules.
4. Generalize from a collection of more specific determination rules.

Because we have a formal definition for determination, inductive acquisition of
determination rules is conceptually straightforward, if pragmatically troublesome. Ac-
quisition experiments on a broad knowledge base are currently under way using the
CYC system ([17]). We are also building determination-based expert systems by in-
duction from examples in the domains of market forecasting and mechanical device
diagnosis from acoustic emission. The results so far seem very promising.

A full understanding of the human processes of analogical inference and general-
ization will surely require further investigations into how we measure similarity, how
situations and rules are encoded and retrieved, and what heuristics are used in project-
ing conclusions when a valid argument cannot be made. But it seems that logic can
tell us quite a lot about analogy, by giving us a standard for evaluating the truth of
its conclusions, a general form for its justification, and a language for distinguishing it
from other forms of inference. At the same time, we have found a consideration of the
logical problem to be of practical benefit, for reasoning by analogy using determinative
knowledge appears to give a system the ability to learn reliably new rules that would
otherwise need to be programmed.

7 Acknowledgments

We would like to thank our advisors, John Perry, Mike Genesereth, and Doug Lenat, as
well as Doug Edwards, Bryn Ekroot, Russ Greiner, Benjamin Grosof, David Helman,
Jerry Hobbs, Dikran Karagueuzian, Kurt Konolige, Stan Rosenschein, Devika Subra-
manian, Dirk Ruiz, Amos Tversky, Paul Rosenbloom, and J. O. Urmson for fruitful
discussions, constructive criticism and moral support.

13



References

[1] Burstein, M. H. A Model of Incremental Analogical Reasoning and Debugging. In
Proceedings of the National Conference on Artficial Intelligence, 1983, pp. 45-48.

[2) Carbonell, J. G. A Computational Model of Analogical Problem Solving. In Pro-

ceedings of the Seventh International Joint Conference on Artificial Intelligence,
1981, pp. 147-152.

{3] Carbonell, J. G. Derivational Analogy and Its Role in Problem Solving. In
Proceedings of the National Conference on Artificial Intelligence, 1983, pp. 64-
69.

[4] Carbonell, J. G. Derivational Analogy. In Michalski, R. S., Carbonell, J. G., and
Mitchell, T. M., editors, Machine Learning II, Morgan Kaufmann, 1986.

[5] Carnap, R. Logical Foundations of Probability. University of Chicago Press, 1963.

(6] Davies, T. Analogy. Undergraduate honors thesis, Stanford University, 1985.
Issued as Informal Note No. IN-CSLI-85-4, Center for the Study of Language and
TInformation, Stanford University, 1985.

[7] Davies, T. R. A Normative Theory of Generalization and Reasoning by Analogy.
To appear in Helman, David H., editor, Analogical Reasoning: Perspectives of
Artificial Intelligence, Cognitive Science, and Philosophy, D. Reidel, Forthcom:

[8] Gallier, J. H. Logic for Computer Science: Foundations of Automatic Th¢
Proving. Harper and Row, 1986.

[9] Genesereth, M. R. and Nilsson, N. J. Logical Foundations of Artificial Intelligence.
Morgan Kaufmann, In Press.

[10) Gentner, D. Structure Mapping: A Theos2tical Framework for Analogy. Cognitive
Science, 7:155-170, 1983.

[11] Goodman, N. Fact, Fiction, and Forecast. Harvard University Press, 1983.

[12] Greiner, R. Learning by Understanding Analogies. Ph.D. thesis, Stanford Uni-
versity, 1985. Issued as Technical Report No. STAN-CS-85-1071, Department of
Computer Science, Stanford University, 1985.

[13] Hesse, M. Models and Analogies in Science. Notre Dame University Press, 1966.

[14] Holland, J., Holyoak, K., Nisbett, R., and Thagard, P. Induction: Processes of
Inference, Learning, and Discovery. MIT Press, 1986.

14



[15) Kedar-Cabelli, S. Purpose-dirc~:ed Analogy. In The Seventh Annual Conference
of the Cognitive Science Society, 1985, pp. 150-159.

[16] Leblanc, H. A Rationale for Analogical Inference. Philosophical Studies, 20:29-31,
1969.

[17] Lenat, D. CYC: Using Common Sense Knowledge to Overcome Brittleness and
Knowledge Acquisition Bottlenecks. The AI Magazine, 6:65-85, 1986.

(18] Marciszewski, W. Dictionary of Logic as Applied in the Study of Language. Mar-
tinus Nijhoff Publishers, 1981.

[19] Mill, J. S. A System of Logic. Harper and Brothers Publishers, 1900.

[20] Mitchell, T. M., Keller, R. M., and Kedar-Cabelli, S. T. Explanation-based Gen-
eralization: A Unifying View. Machine Learning, 1(1), 1986.

[21] Nilsson, N. J. Shakey the Robot. Technical Note 323, Artificial Intelligence Center,
SRI International, Menlo Park, CA, 1984.

[22] Rosenbloom, P. S., and Newell, A. The Chunking of Goal Hierarchies: A Gen-
eralized Model of Practice. In Michalski, R. S., Carbonell, J. G., and Mitchell,
T. M., editors, Machine Learning II, Morgan Kaufmann, 1986.

(23] Russell, S. J. The Compleat Guide to MRS. Technical Report No. STAN-CS-85-
1080, Department of Computer Science, Stanford University, 1985.

[24] Russell, S. J. A Quantitative Analysis of Analogy by Similarity. In Proceedings
of the National Conference on Artificial Intelligence, 1986, pp. 284-288.

[25] Russell, S. J. Analogical and Inductive Reasoning. Ph.D. thesis, Stanford Univer-
sity, 1986.

[26] Russell, S. J., and Grosof, B. N. A Declarative Approach to Bias in Concept

Learning. In Proceedings of the National Conference on Artificial Intelligence,
1987.

[27] Shaw, W. H. and Ashley, L. R. Analogy and Inference. Dialogue: Canadian
Journal of Philosophy, 22:415-432, 1983.

(28] Ullman, J. D. Principles of Database Systems. Computer Science Press, 1983.

[29] Vardi, M. Y. The Implication and Finite Implication Problems for Typed Template
Dependencies. Technical Report No. STAN-CS-82-912, Department of Computer
Science, Stanford University, 1982.

15



[30] Weitzenfeld, J. S. Valid Reasoning by Analogy. Philosophy of Science, 51:137-149,
1984.

[31] Wilson, P. R. On the Argument by Analogy. Philosophy of Science, 31:34-39,
1964,

[32) Winston, P. H. Learning and Reasoning by Analogy. Communications of the
ACM, 23:689-703, 1980.

16




Enclosure No. 9

W 1 ™ o O ettt o B e gt Lyt



THE FINITE STRING NEWSLETTER

StTE REPORT

ANOTHER FROM THE DARPA SERIES
(SEE YOLUME 12, NUMBER 2)

OVERVIEW OF THE TACITUS PROJECT

Jerry R. Hobbs
Artificial Intelligence Center
SR1 International

Researchers: Jonn Bear, William Croft, Todd Davies,
Douglas Edwards,‘Jerry Hobbs, Kenneth Laws,
Paul Martin, Fernando Pereira, Raymond Perrault,
Stuart Shieber, Mark Stickel, Mabry Tyson

AIMS OF THE PROJECT

The specific aim of the TACITUS project is to develop
interpretation processes for handling casualty reports
(casreps), which are messages in free-flowing text about
breakdowns of machinery. These interpretation proc-
esses will be an essential component, and indeed the
principal component, of systems for automatic message
routing and systems for the automatic extraction of infor-
mation from messages for entry into a data base or an
expert system. In the latter application, for example, it is
desirable to be able to recognize cunditions in the
message that instantiate conditions in the antecedents of
the expert system’s rules, so that the expert system can
reason on the basis of more up-to-date and more specific
information.

More broadly, our aim is to develop general proce-
dures, together with the underlying theory, for using
commonsense and technical knowledge in the interpreta-
tion of written discourse. This effort divides into five
subareas:

1. syntax and semantic translation,

2. commonsense knowledge,

3. domain knowledge,

4. deduction,

5. “local” pragmatics.

Qur approach in each of these areas is discussed in turn.

SYNTAX AND SEMANTIC TRANSLATION

Syntactic analysis and semantic translation in the
TACITUS project are being done by the DIALOGIC
system. DIALOGIC has perhaps as extensive a coverage
of English syntax as any system in existence, it produces
a logical form in first-order predicate calculus, and it was
used as the syntaciic componcat of the TEAM system.
The principal addition we have made to the system
during the TACITUS project has been a menu-based
component for rapid vocabulary acquisition that allows
us 10 acquire several hundred lexical items in an after-
noon’s work. We are now modifying DIALOGIC to
produce neutral representations instead of multiple read-
ings for the most common types of syntactic ambiguities,

including prepositional phrase attachment ambiguities
and compound noun ambiguities.

COMMONSENSE XNOWLEDGE

Our aim in this phase of the project is to encode large
amounts of commonsense knowledge in first-order predi-
cate calculus in a way that can be used for knowledge-
based processing of natural language discourse. Our
approach is to define rich core theories of various
domains, explicating their basic ontologies and structure,
and then to define, or at least to characterize, various
English words in terms of predicates provided by these
core theories. So far, we have alternated between work-
ing from the inside out, from explications of the core
theories to characterizations of the words, and from the
outside in, from the words to the core theories.

Thus, we first proceeded from the outside in by exam-
ining the concept of wear, as in worn bearings, seeking to
define wear, and then to define the concepts we defined
wear in terms of, pushing the process back to basic
concepts in the domains of space, materials, and force,
among others. We then proceeded from the inside out,
trying to flesh out the core theories. of these domains, as
well as the domains of scalar notions, time, measure,
orientation, shape, and functionality. Then to test the
adequacy of these theories, we began working from the
outside in again, spending some time defining, or charac-
terizing, the words related to these domains that occurred
in our target set cf casreps. We are now working from
the inside out again, going over the core theories and the
definitions with a fine-tooth comb, checking manually for
consistency and adequacy, and proving simple conse-
quences of the axioms on the KADS theorem-prover.
This work is described in Hobbs et al.

DOMAIN KNOWLEDGE

In all of our work we are seeking general solutions that
can be used in a wide variety of applications. This may
seem impossible for domain knowledge. In our particular
case, we must express facts about the starting air
compressor of a ship. It would appear difficult to employ
this knowledge in any other application. However, our
approach makes most of our work, even in this area, rele-
vant to many other domains. We are specifying a
number of *“‘abstract machines” or “abstract systems”, in
levels, of which the particular device we must model is an
instantiation. We define, for example, a closed produc-
er-consumer syctem, We then define a closed clean fiuid
producer~consumer system as a closed producer-consumer
system with certain additional properties, and at one
more lewt | of specificity, we define a pressurized lube-oil
system. The specific lube-oil system of the starting air
compressor, with all its idiosyncratic features, is then an
instantiation of the last of these. In this way, when we
have to model other devices, we can do so by defining
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them to be the most specific applicable abstract machine
that has been defined previously, thereby obviating much
of the work of specification. An electrical circuit, for
example, is also a closed producer-consumer system.

DEDUCTION

The deduction component of the TACITUS system is the
KLAUS Automated Deduction System (KADS), devel-
oped as part of the KLAUS project for research on the
interactive acquisition and use of knowledge through
natural language. Its principal inference operation is
nonclausal resolution, with possible resolution operations
encoded in a connection graph. The nonclausal repre-
sentation eliminates redundancy introduced by translat-
ing formulas to clause form, and improves readability as
well. Special control connectives can be used to restrict
use of the formulas to either forward chaining or back-
ward chaining. Evaluation functions determine the
sequence of inference operations in KADS. At each step,
KADS resolves on the highest-rated link. The resolvent is
then evaluated for retention and links to the new formula
are evaluated for retention and priority. KADS supports
the incorporation of theories for more efficient
deduction, including deduction by demodulation, associa-
tive and commutative unification, many-sorted unifica-
tion, and theory resolution. The last of these has been
used for efficient deduction using a sort hierarchy. Its
efficient methods for performing some reasoning about
sorts and equality, and the facility for ordering searches
by means of an evaluation functioa, make it particularly
well suited for the kinds of deductive processing required
in a knowledge-based natural language system.

LOCAL PRAGMATICS

We have begun to formulate a general approach to
several problems that lie at the boundary between
semantics and pragmatics. These are problems that arise
in single sentences, even though one may have to look
beyond the single sentence to solve them. The problems
are metonymy, reference, the interpretation of compound
nominals, and lexical and syntactic ambiguity. All of
these may be called problems in *local pragmatics”.
Solving them constitutes at least part of what the inter-
pretation of a text is. We take it that interpretation is a
matter of reasoning about what is possible, and therefore
rests fundamentally on deductive operations. We have
formulated very abstract characterizations of the
solutions to the local pragmatics problems in terms of
what can be deduced from a knowledge base of
commonsense and domain knowledge. In particular, we
have devised a general algorithm for buildin g an
expression from the logical form of a sentence, such that
a constructive proof of the expression from the know-
ledge base will constitute an interpretation of the
sentence. This can be illustrated with the sentence from
the casreps

Disengaged compressor after lube oil alarm.

Comnntotinet T anmose LI L R SO T

Site Reports

To resolve the reference of alarm, one must prove
constructively the expression

(3 x)alarm(x)

To resolve the implicit relation between the two nouns in
the compound nominal lube oil alarm (where lube oil is
taken as a multiword), one must prove constructively
from the knowledge base the existence of some possible
relation, which we may call nn, between the entities
referred to by the nouns:

A x,y) alarm(x) A lube-oil(y) \ nn(y,x)

A metonymy occurs in the sentence in that after requires
its object to be an event, whereas the explicit object is a
device. To resolve a metonymy that occurs when a pred-
icate is applied to an explicit argument that fails to satisfy
the constraints imposed by the predicate on its argument,
one must prove constructively the possible existence of
an entity that is related to the explicit argument and satis-
fies the constraints imposed by the predicate. Thus, the
logical form of the sentence is modified to

... A after(d,e) A gle,x) A alarm(x) A ...
and the expression to be proved constructively is
(3 e) eventle) N gle,x) A alarm(x) A ...

In the most general approach, nn and ¢ are predicate
variables. In less ambitious approaches, they can be
predicate constants, as illustrated below.

These are very abstract and insufficiently constrained
formulations of solutions to the local pragmatics prob-
lems. Qur further research in this area has probed in four
directions.

(1) We have been examining various previous
approaches to these problems in linguistics and computa-
tional linguistics, in order to reinterpret them into our
framework. For example, an approach that says the
implicit relation in a compound nominal must be one of a
specified set of relations, such as “‘part-of”, can be
captured by treating nn as a predicate constant and by
including in the knowledge base axioms like

(¥ x,y) pari-of(y.x) > nn(x,y)

In this fashion, we have been able to characterize
succinctly the most common methods used for solving
these problems in previous natural language systems,
such as the methods used in the TEAM system.

{2) We have been investigating constraints on the
most general formuiations of the problems. There are
general constraints, such as the Minimality Principle,
which states that one should favor the minimal solution
in the sense that the fewest new entities and relations
must be hypothesized. For example, the argument-rela-
tion pattern in compound nominals, as in lube oil
pressure, can be seen as satisfying the Minimality Princi-
ple, since the implicit relation is simply the one already
given by the head noun. In addition, we are looking for
constraints that are specific to given problems. For
example, whereas whole-part compound nominals, like
regulator valve, are quite common, part-whole compound
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nominals seem to be quite rare This is probably because
of a principle that says noun modifiers should further
restrict the possible reference of the noun phrase, and
parts are common to too many wholes to perform that
function.

(3) A knowledge base contains two kinds of know-
ledge, “type" knowledge about what kinds of situations
are possible, and “token™ knowledge about what the
actual situation is We are trying to determine which of
these kinds of knowledge are required for each of the
pragmatics problems. For example, reference requires
both type and token knowledge, whereas most if not all
instances of metonymy seem to require only type know-
ledge. !

(4) At the most abstract level, interpretation requires
the constructive proof of a single logical expression
consisting of many conjuncts. The deduction component
can attempt to prove these conjuncts in a variety of
orders. We have been investigaiing some of these possi-
ble orders For example, one plausible candidate is that
one should work from the inside out, trying first to solve
the reference problems of arguments of predications
before attempting to solve the compound nominal and
metonymy problems presented by those predications. In
our framework, this is an issue of where subgoals for the
deduction component should be placed on an agenda.

IMPLEMENTATION

In our implementation of the TACITUS system, we are
beginning with the minimal approach and building up
slowly. As we implement the local pragmatics oper-
ations, we are using a knowledge base containing only
the axioms that are needed for the test examples. Thus,
it grows slowly as we try out more and more texts. As
we gain greater confidence in the pragmatics operations,
we will move more and more of the axioms from our
commonsense and domain knowledge bases into the
system’s knowledge base. Our initial versions of the
pragmatics operations are, for the most part, fairly stand-
ard techniques recast into our abstract framework. When
the kncwledge base has reached a significant size, we will
begin cxperimenting with more general solutions and
with various constraints on those general solutions.

FUTURE PLANS

In addition to pursuing our research in each of the areas
described above, we will institute two new efforts next
year. First of all, we will begin to extend our work in
pragmatics to the recognition of discourse structure. This
problem is illustrated by the following text:

Air regulating valve failed.
Gas turbine engine wouldn’t turn over.
Valve parts corroded.

The temporal structure of this text is 3-1-2; first the
valve parts corroded, and this caused the valve to fail,
which caused the engine to not turn over. To recognize
this structure, one must reason about causal relationships

Calis for Papers, Proposals, Pictures, Nominations

in the model of the device, and in addition one must
recognize patterns of explanation and consequence in the
text.

The second new effort will be to build tools for
domain knowledge acquisition. These will be based on
the abstract machines in terms of which we are presently
encoding our domain knowledge. Thus, the system
should be able to allow the user to choose one of a set of
abstract machines and then to augment it with vanous
parts, properties and relations.
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Local Pragmatics

Jerry R. Hobbs and Paul Martin
Artificial Intelligence Center
SRI International

Abstract

The outline of a unified theory of local pragmatics phenomena is
presented, including an approach to the problems of reference resolu-
tion, metonymy, and interpreting nominal compounds. The TACITUS
computer system embodying this theory is also described. The theory
and system are based on the use of a theorem prover to draw the ap-
propriate inferences from a large knowledge base of commonsense and
technical knowledge. Issues of control are discussed. Two important
kinds of implicatures are defined, and it is shown how they can be used
to determine what in a text is given and what is new.

1 The Problems

In the messages about breakdowns in machinery that are being processed by
the TACITUS system at SRI International, we find the following sentence:

(1) We disengaged the compressor after the lube oil alarm.

This sentence, like virtually every sentence in natural language discourse,
confronts us with difficult problems of interpretation. First, there are the
reference problems; what do “the compressor” and “the lube oil alarm”
refer te. Then there is the problem of interpreting the implicit relation
between the two nouns “lube oil” (considered as a multiword) and “alarm”
in the nominal compound “lube oil alarm”. There is also a metonymy that
needs to be expanded. An alarm is a physical object, but “after” requires
events for its arguments. We need to coerce “the lube oil alarm” into “the
sounding of the lube oil alarm”.! There is the syntactic ambiguity problem

1One could say that “alarm” in this sentence means the event of “alarming”, so that
there is no metonymy. If we took this approach, however, there would be a lexical ambi-



of whether to attach the prepositional phrase “after the lube oil alarm” to
“the compressor” or to “disengaged”.

All of these problems we have come to call problems in “local pragmat-
ics”. Local pragmatics encompasses reference resolution, metonymy, the in-
terpretation of nominal compounds and other implicit and vague predicates,
and the resolution of sy utactic, lexical, and quantifier scope ambiguities. It
may be that to solve these problems, we need to look at the surrounding dis-
course and the context in which the utterance is made. But we can determine
locally-—just from the sentence itself—that we have a problem. They seem
to be specifically linguistic problems, but the traditional linguistic methods
in syntax and semantics have not yielded solutions of any generality.

The difficulty, as is well-known, is that to solve these problems we need
to use a great deal of arbitrarily detailed general commonsense and domain-
specific technical knowledge. In sentence (1) we need to know, for example,
that the compressor has a lube oil system, which has an alarm, which sounds
when the pressure of the lube oil drops too low. We need to know that
disengaging and sounding are events, and that a compressor isn’t.

A theory of local pragmatics phenomena must therefore be a theory
about how knowledge is used. The aim of our research has been to develop
a unified theory of local pragmatics, based on the drawing of appropriate
inferences from a large knowledge base, and to implement a system embody-
ing that theory for solving local pragmatics problems in naturally occurring
texts. It is our intention that in this theory general solutions to local prag-
matics problems can be characterized, but it should also be possible to cast
current, limited approaches to these phenomena as special cases of the gen-
eral solutions.

This research is taking place in the context of the TACITUS project,?
the specific aim of which is to develop interpretation processes for handling
casualty reports (casreps), which are messages in free-flowing text about
breakdowns in mechanical devices. More broadly, however, its aim is to
develop general procedures, together with the underlying theory, for us-
ing commonsense and technical knowledge in the interpretation of written
(and spoken) discourse regardless of domain. We expect such interpretation
processes to constitute an essential component, and indeed the principal

guity problem of deciding which sense of “alarm” is being used, and the processing saved
on metonymy would be used up by the correspondingly more difficult nominal compound
problem.

2A part of the Stratezic Computing program sponsored by the Defense Advanced
Research Projects Agency.




component, in sophisticated natural language systems of the future.

The TACITUS system has four principal components. First, a syntactic
front-end, the DIALOGIC system (Grosz et al., 1982), translates sentences
of a text into a logical form in first-order predicate calculus, described in
Section 3.1. Second, we are building a knowledge base, specifying large
portions of potentially relevant knowledge encoded as predicate calculus
axioms (Hobbs et al., 1986). Third, the TACITUS system makes use of the
KADS theorem prover, developed by Mark Stickel (Stickel, 1982). Finally,
there is the pragmatics component, which uses the theorem prover to draw
appropriate inferences from the knowledge base, thereby constructing an
interpretation of the text. At the present time, the pragmatics component
deals only with local pragmatics, and what it does is the subject of this
paper. In addition, however, we are beginning to augment the pragmatics
component with procedures for relating the text to the user’s interests, and
we plan to augment it with procedures for recognizing discourse structure.

Section 2 describes the three local pragmatics problems we are currently
devoting our efforts to. The solutions to each of them requires constructing
and proving a particular logical expression. In Section 3 we discuss how
an expression—the interpretation expression—is constructed for an entire
sentence, such that its proof constitutes an interpretation of the sentence.
We also discuss how the search for a proof of this expression can be ordered.
Very often, interpretation requires that certain facts be assumed, where the
only warrant for the assumptions is that they lead to a good interpretation.
These are called “implicatures”. In Section 4 we describe our current ap-
proach to implicature and an approach we are just beginning to investigate.
In Section § we describe and illustrate the current implementation.

2 Local Pragmatics Phenomena

2.1 Interpretation as Deduction

Language does not give us meanings. Rather, it gives us problems to be
solved by reasoning about the sentence, using general knowledge. We get
meaning only by solvir , these problems. Before we can use what is asserted
in a sentence to draw further conclusions, we must first interpret the sentence
by deducing its presuppositions from the knowledge base.

Since knowledge is encoded in the TACITUS system as axioms in pred-
icate caiculus, reasoning about them, and hence arriving al interpreiations,
is a matter of deduction. To interpret a sentence, we first determine from the




sentence what interpretation problems we are required to soive, i.e., what
local pragmatics phenomena are exhibited. These are framed as expressions
to be proved by the deduction component. The proofs of these expressions
constitute the interpretation of the sentence. Where there is more than one
interpretation, it is because there is more than one proof for the expressions.

In this section, we describe the three phenomena we are addressing first—
reference, metonymy, and nominal compounds. For each of these, we de-
scribe the expression that needs to be proved. For the last two, we describe
how current standard techniques can be seen as special cases of our general
approach.

2.2 Reference

Entities are referred to in discourse in many guises. They can appear as
proper nouns, definite, indefinité, and bare noun phrases of varying speci-
ficity, pronouns, and omitted or implicit arguments. Moreover, verbs, ad-
verbs, and adjectives can refer to events, conditions, or situations. The
problem in all of these cases is to determine what is being referred to. Here
we confine ourselves to definite noun phrases, although in Section 4 we ex-
tend our treatment to indefinite and bare noun phrases and nonnominal
reference.
In the sentence

The alarm sounded.

the noun phrase “the alarm” is definite, and the hearer is therefore expected
to be able to identify a unique entity that the speaker intends to refer to.
Restating this in theorem-proving terminology, the natural language system
should be able to prove constructively the expression

(3 z)alarm(z)

That is, it must find an z which is an alarm in the model of the domain. If
it succeeds, it has solved the reference problem.?
Similarly, in the text

(2) The compressor is down.
The air inlet valve is clogged.

31n this paper we ignore the problem of the uniqueness of the entity referred to. A hint
of our approach is this: If the search for a proof is heuristically ordered by salience, then
the entity found will be the uniquely most salient.




we need, in interpreting the second sentence, to prove the existence of an air
inlet valve. We know from the first sentence that there is a compressor, and
our model of the domain tells us that compressors have air inlet valves. So
we can conclude that the reference is to the air inlet valve of that compressor.

In processing the casreps there is a further wrinkle in the problem—noun
phrases rarely have determiners, and there is no clear signal whether it is
definite or indefinite. This problem is dealt with in Section 4.

2.3 Metonymy

In metonymy, or indirect reference, we refer to one thing as a way of referring
to something related to it. Sentence (1) contains the phrase “after the
alarm”, where what is really meant is “after the sounding of the alarm”.
“The alarm” is used to refer to the sounding which is related to it, and in
interpreting the phrase we need to coerce the alarm to its sounding,.

Metonymy is extremely common in discourse; when examined closely,
very few sentences will be found without an example. Certain functions very
frequently provide the required coercious. Wholes are used for parts; tokens
are used for types; people are used for names. Nunberg (1978), however, has
shown that there is no finite set of possible coercion functions. The relation
between the explicit and implicit referents can be virtually anything.

From a generation point of view, the story behind metonymy must go
something like this: A speaker decides to say

... A after(Ep, Ey) A sound'(Ey, A) A alarm(A)

that is, Eg is after the sounding E; of the alarm A. However, given the
first and last predications, the middle one is obvious, and hence can be left
out. Since after needs a second argument and A has to be the argument of
something, after takes A as its second argument, yielding

... A after(Ep, A) A alarm(A)

or “after the alarm”.

From an interpretation point of view, the story is this: Every morpheme
in a sentence corresponds to a predication, and every predicate imposes se-
lectional constraints on its arguments. Since entities in the text are generally
the arguments of more than one predicate, there could well be inconsistent
constraints imposed on them (especially in light of the above generation
story). To eliminate this inconsistency, we interpose, as a matter of course,
another entity and another relation between any two predications. Thus,
when we encounter in the logical form of a sentence




... A after(eg,a) A alarm(a)
we assume that what is intended is really
... N after(eg,k) A rel(k,a) A alarm(a)

for some entity k and some relation rel. The predication rel(k,a) functions
as a kind of buffer, or impedence match, between the explicit predications
with their possibly inconsistent constraints. In many cases, of course, there is
no inconsistency. The argument satisfies the selectional constraints imposed
by the predicate. In these cases, k is a and rel is identity. Thisin fact is the
first possibility tried in the implemented system. Where this fails, however,
the problem is to find what & and rel refer to, subject to the constraint,
imposed by the predicate after, that k is an event.
Therefore, TACITUS modifies the logical form of the sentence to

... A\ after(eg, k) A rel(k,a) A alarm(a)

and for an interpretation, the expression that must be proved constructively
is

(3 k,rel,a)event(k) A rel(k,a) A alarm(a)

We need to find an event k bearing some relation rel to the alarm.

The most common current method for dealing with metonymy, e.g., in
the TEAM system (Grosz et al., 1985), is to specify a small set of possible
coercion functions, such as name-of. This method can be captured in the
present framework by treating rel not as a predicate variable, but as a
predicate constant, and expressing the possible coercions in axioms like the
following:

(Vz,y)name(z,y) D rel(z,y)
That is, if z is the name of y, then y can be coerced to z. This in fact is the
method we have implemented in our initial version of the TACITUS system.
2.4 Nominal Compounds

To interpret a nominal compound, like “lube oil alarm” (where “lube oil”
is taken as a multiword), it is necessay to discover the implicit relation
between the two nouns.* Some relations occur quite frequently in nominal

*Some nominal compounds can of course be treated as single lexical items. This case
is not interesting and is not considered here.




compounds—part-of, location, purpose. Moreover, when the head noun is
relational, the modifier noun is often one of the arguments of the relation.
Levi (1978) argued that these two cases encompassed virtually all nominal
compounds. However, Downing (1977) and others have shown that virtually
any relation can occur. A lube oil alarm, for example, is an alarm that
sounds when the pressure of the lube oil drops too low.

To discover the implicit relation, one must prove constructively from the
knowledge base the existence of some possible relation, which we may call
nn, between the entities referred to by the nouns:

(3z,y)alarm(z) A lube-0il(y) A nn(y,z)

Just as with metonymy, the most common method for dealing with nom-
inal compounds® is to hypothesize a small set of possible relations, such as
part-of. In our framework, we can use this approach by taking nn to be not
a predicate variable but a predicate constant, and encoding the possibilities
in axioms like

(Vz,y)part(z,y) D nn(y,z)

For example, if a blade z is a part of a fan y, then “fan blade” is a possible
nominal compound. Equality also implies an nn relation, for nominal com-
pounds like “metal particle” (an z such that z is metal and z is a particle).

To deal with relational nouns, such as “oil sample” and “oil pressure”,
we encode axioms like

(3) (Yz,y)sample(z,y) D nn(y,z)

This tells us that if z is a sample of oil y, then z can be referred to by the
nominal compound “oil sample”.

Finin (1980) argues that one of the most common kinds of relations is
one that involves the function of the referent of the head noun. The function
of a pump is to pump a fluid, so “oil pump” is a possible nominal compound.
This can be encoded in axioms of the pattern

(Vz,y,e) function(e,z) A p'(e,z,y) D nn(y,z)

That is, if e is the function of z where e is the situation of z doing something
p to y, then there is an nn relation between y and z.

As with metonymy, in our initial version of TACITUS, it is the standard,
restricted method that we have impiemented. This is because we wanted

®Other than treating them as multiwords.
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to make sure we were not losing ground in seeking a general solution. Nev-
ertheless, our approach allows us to begin experimenting with the general
solution to the nominal compound problem, where the implicit relation can
be anything at all.

3 The Construction and Proof of the Interpreta-
tion Expression

3.1 Preliminary Note on Logical Form

DIALOGIC, the syntactic front end of TACITUS, produces a logical form for
the sentence in something like a first-order logic but encoding grammatical
subordination relations as well as predicate-argument relations. It is “on-
tologically promiscuous” in that events and conditions are reified (Hobbs,
1985a). A slightly simplified version of the logical form for the sentence

(4) The lube oil alarm sounded.
is
(5) past([es | sound'(e1,[ay | alarm(ay) A
nn(fo) | lube-0il(0;)],a1)])])

can be read “such that” or “where”, so that a paraphrase of this formula
would be “In the past there was an event e; which was a sounding event by
ay where a; is an alarm and there is an nn relation between @; and 0y such
that o; is lube oil.

In general, the logical form of a sentence is a “proposition”. A proposi-
tion is a predicate applied to one or more arguments. An argument is either
a variable or a “complex term”. A complex term is a variable, followed by
a “such that” sign, followed by a “restriction”. (Complex terms are sur-
rounded by square brackets for readability.) A restriction is a conjunction
of propositions.

This notation can be translated into a notation using four-part quan-
tifier structures (Woods, 1977; Moore, 1981) by successively applying the
following transformation:

Pz | g(=)]) = (32 g(=) p(a))®

®Quantifiers other than existentials are ignored in this paper. For the treatment we
intend to give them, see Hobbs (1983).
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It can be translated into standard Russellian notation, with a consequent loss
of information about grammatical subordination, by successively applying
the following transformation: '

p(lz | ¢(2))) = p(2) A ¢()

3.2 Order of Interpretation'

As we saw in Section 2, interpretation involves solving a number of probiems,
or proving a number of expressions, and this raises a question. In which order
should we try to solve them? A naive answer would be to try to solve them
“from the inside out”. Before trying to find the lube oil alarm, we should try
to find the lube oil the alarm is an alarm for. Before checking that the lube
oil alarm obeys the selectional constraints imposed by “sound”, we should
learn as much as we can about the lube oil alarm; in particular, we should
resolve the reference of “the lube oil alarm” so we know what lube oil alarm
is being talked about.

This means that given the logical form (5), we should solve the local
pragmatics problems in the following order:

1. Find the reference of oy, the lube oil. Prove
(3 0y)lube-0il(0y)
2. Given that, find the reference of a;, the alarm, and as a by-

product, find the implicit relation nn encoded in the nominal
compound. If 0, was resolved to O, then prove

(3ar)alarm(a;) A nn(a;,0)

3. Given that, check the predicate-argument congruence of sound
applied to a;. If a; was resolved to A and sound requires its
argument to be a physical object, then prove

(3 k)physical-object(k) A rel(k,A)

Unfortunately, this order will not always work. Information relevant to
the solution of any of these local pragmatics problems can come from the
solutions of any of the others. For example, in the sentence

This thing won’t work.

selectional constraints imposed by “work™ provide more information about
the referent of “this thing” than the noun phrase itself does.




Thus, in a more sophisticated approach, we would construct a single
expression to be proved, encoding what is required for all of the local prag-
matics problems. For sentence (4), the expression would be

(3 k,ay,nn,0y)physical-object(k) A rel(k,a;) A alarm(a;)
Ann(ay,01) A lube-oil(o)

Let us call this the interpretation ezpression.

The conjuncts of the interpretation expression could be proved in any
order. The inside-out order s only one possibility. The search for a proofis a
heuristic, depth-bound, breadth-first search, and the inside-out order can be
taken as an indication of how much of its resources the theorem prover should
devote to proofs of the various conjuncts, and how early. More resources
should be devoted earlier to the initial conjuncts in inside-out order. But
other possible orders of proof must be left open. The difficulty with this
approach, however, is that it is hard to get partial results in cases of failure.

We are currently using a compromise between these two orders—a fail-
soft, inside-out order. As we proceed inside out, at each step the theorem-
prover is given the full expression built up to that point. However, the
expression has as an antecedent the instantiations of what was proven in
earlier steps. Thus, in step 3 in the example, the expression is

lube-0il(0) A alarm(A) A nn(4,0) D
(3 k,ay,01)physical-object(k) A rel(k,ay)
Aalarm(a;) A nn(a;,01) A lube-oil(0y)

Those prior instantiations consistent with higher constraints will be proven
immediately from the antecedent, and new proofs will need to be discovered
only for those which are inconsistent.”

3.3 The Algorithm for Constructing the Interpretation £x-
pression

The required expression can be constructed by a recursive procedure which
for convenience we will call PRAG. PRAG is called with a proposition and
a logical expression as its two arguments. Initially, PRAG is called with the
logical form of the sentence as its first argument and T as its second. The
second argument (call it ezpr) will be used to build up the interpretation
expression for the sentence.

"This technique is due to Mark Stickel.
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first, to handle the congruence requirement imposed by the predicate
p of the proposition on its arguments, if the knowledge base contains the
selectional constraint

p(z) : r(z)

i.e., that r must be true of z, then (k) A rel(k,a) is conjoined to expr
where & is a new existentially quantified variable, and the relevant part of
the logical form is altered from p(a) to p(k) A rel(k,a)

Next, each of the arguments is processed in turn. To resolve reference for
an argument of the form [« | P], all of the complex terms in P are replaced
by their lead variables and the result is conjoined to expr.

Finally, for each of the arguments of the proposition, PRAG is called
recursively on all of the conjuncts in its restriction P (with the original
complex terms in P intact), and the results are conjoined to ezpr. PRAG
returns the interpretation expression ezpr.

3.4 Minimality

Axioms can be assigned a cost, depending upon their salience. High salience,
low cost axioms would then be tried first. Short proofs are naturally tried
before long proofs. Thus, a cost depending on salience and length is as-
sociated wtih each proof, and hence with each interpretation. Where, as
usually happens, there is more than one possible interpretation, the better
interpretations are supported by less expensive proofs.

The second criterion for good interpretations is that we should favor
the minimal solution in the sense that the fewest new entities and relations
needed to be hypothesized. For example, the argument-relation pattern
in nominal compounds, as in “lube oil pressure”, is minimal in that no
new implicit relation need be hypothesized; the one already given by the
head noun will do. In metonymy, the identity coercion is favored for the
same reason, and shorter coercions are favored over longer ones. Similarly,
in the definite reference example (2), the air inlet valve of the mentioned
compressor is favored over the air inlet valve of the compressor adjacent to
the mentioned compressor, because of the same minimality prinicple.

These ideas at least give us a start on the very difficult problem of
choosing the best interpretation.
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4 Implicatures and Abduction

4.1 Given and New, Definite and Indefinite, Presupposed
and Asserted

When we hear a sentence, we try to match part of the information it con-
veys with what we already know; the rest is new information we add (or
decide not to add) to what we know. In our approach to reference, proving
constructively from the knowledge base the existence of a definite entity is
precisely the operation of matching the definite noun ‘phrase with what we
already know. Indefinite noun phrases, by contrast, require us to introduce
a new entity, rather than find an already existing entity. However, a problem
arises in the casreps that is really just an aggravated form of a problem that
arises generally. There are virtually no articles. Sentence (1) was really

Disengaged compressor after lube oil alarm.

Consequently, we can almost never know whether an entity is definite or
not, It can go either way. In

(6) Metal particles in oil sample and filter.

the oil filter is something we know about already. It is in our model of the
device. “Qil filter” is definite. On the other hand, we are just being told
that a sample of the oil was taken. “Oil sample” is indefinite.

In general discourse, where articles do occur, a problem still arises, since
definite articles are sometimes used where the entity is not really known. If
a speaker begins a sentence with

The trouble with John is ...

it may be that both the speaker and hearer know John has trouble and are
able to resolve the reference. Or it could be that the speaker is introduc-
ing for the first time the fact that there is a problem with John. Related
examples and an account of this phenomenon can be found in Hobbs (1987).

At first glance, it may seem that this problem is compounded in our
ontologically promiscuous approach to logical form. There are entities cor-
responding to every predication made by the sentence, for example, the dis-
engaging in sentence (1). For each of these entities we must decide whether
it is definite or indefinite, and we are never given an article to tell us which
it is. However, this turns out to be identical with the traditional problem of
determining whether a predication is given or new, or in other terminology,
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is part of the presuppositions of the sentence or part of what is asserted.
Thus, the ontologically promiscuous notation, rather than compounding the
definite-indefinite problem, collapses it and the given-new problem under a
single treatment.

Normatively, the main verb of a sentence asserts new information and

grammatically subordinated material is given. But this is not always true.
In

The philosophical Greeks contributed much to civilization.

it is unclear whether “philosophical” is intended to be used referentially as
given information (the restrictive case) or is another new assertion being
slipped into the sentence (the nonrestrictive case). In

An innocent man was hanged. today.

it could be that the speaker and hearer both know a man was hanged today,
and the speaker is asserting his innocence. Where there is an adverbial, as
in

John saw his brother recently.

it is unclear (without intonation) whether the seeing or the recency or both
is being asserted as new information.

A heuristic we tried initially was to assume that everything represented
by an event variable (e;, €3,...) corresponds to new information, i.e., is being
asserted, and everything else is definite and is being used referentially. This
is reasonably accurate in the casreps, but sentence (6) shows that it is not
adequate everywhere. Consider also the-text

The low lube oil alarm sounded.
The alarm was activated during routine start of start air com-
Pressor.

One can argue that the existence of an activation is already implicit in the
sounding, and that therefore the activation is given, or definite.

The real story is that it is part of the job.of pragmatics to determine
whether each proposition in the sentence is being asserted or presupposed,
and whether each noun phrase, regardless of surface form, is really definite
ot indefinite. This can-be accomplished-by means of referential implicatures,
which is our current method for handling this problem.
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4.2 Referential Implicatures
Let us begin with the simplest case—clear indefinites, as in
A blade of the fan was chipped.

We cannot, at the outset, simply assert the existence of a B such that B is
the blade of the fan, for we have not yet identified the fan. If we followed the
naive search order of Section 3.2, we could wait until the fan was identified,
assert the existence of one of its blades, and proceed to interpret the rest
of the sentence. However, in the sophisticated search order, we cannot do
this, for metonymy problems higher up in a logical form, say, for “chip”,
may need to be solved before reference problems lower down can be solved,
and these metonymy problems will need information about its argument.
Moreover, several fans may be proposed as the referent of “the fan”, and
B cannot be a blade of all of them. It must be the blade of the fan finally
decided upon.

To handle this problem, as we process the sentence in the routine PRAG,
we temporarily add to the knowledge base, statements asserting the exis-
tence of the indefinite entities. For indefinites at the bottom of the logical
form, this is straightforward. For

A metal chip was found in the sump.
we simply assert
(3y)metal(y) A chip(y)

For indefinites that are functionally dependent on definites, things are a
little more complicated. We cannot say

(32, y)blade(z,y)

for there would be no guarantee the fan finally selected would be that y. We
cannot say

(Vy)(3z)blade(z,y)

for certainly not everything has a blade. We must make an assertion of the
form
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Think of this as saying, for any way that you can resolve “the fan”, there is
something which is its blade. But even this is not enough. It may be that we
know about some fans that have no blades, and adding this assertion would
make our knowledge base inconsistent. Thus, we need something more like
the nonmonotonic assertion

(7) (Vy)fan(y) A CONSISTENT|(3z)blade(z, )]
D (3z)blade(z,y)

In principle, this is what we believe is correct. The procedure CONSISTENT
could be implemented by a procedural call within the theorem prover to the
theorem prover itself. But of course, there is no guarantee it will terminate.
Soin practice, our present strategy is simply to assume consistency, ignoring
the problem. A more principled approach would be to do some simple
type-checking for inconsistencies, and if none are found, simply to assume
consistency.

We may call assertions like (7) “referential implicatures”

Now let us return to the problem of Section 4.1, that it is impossible
in general to know when a reference is definite or indefinite, or whether a
proposition is presupposed or asserted. We can solve this problem by con-
structing referential implicatures for every entity in the logical form, whether
from a definite, indefinite, or bare noun phrase, or a nonnominal reference.
Of course, if this were all we did, every sentence would be easy to interpret
and the interpretation would fail to tell us anything. For definite references,
especially, we do not want to use the referential implicatures unless all else
fails. To accomplish this, we associate costz with the various referential
implicatures. Referential implicatures for explicitly indefinite NPs are free.
The ones for explicitly definite NPs are quite expensive. Those for bare
NPs are intermediate between the two, and those for events, introduced, for
example, by verb phrases, are less expensive than those for bare NPs but
not free. These costs are factored into the cost of proofs leading to inter-
pretations, so that interpretations not making use of expensive referential
implicatures are cheaper and hence better, if they are available. Thus, some-
thing is taken as new information only when it fails, after an appropriate
amount of processing, to be recognized as given.

4.3 Identity Implicatures

A second kind of implicature that would be necessary in this kind of ap-
proach is an assumption, for no other reason than that it will lead to a
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good interpretation of the text, that two entities are identical. The use of
such implicatures for resolving pronoun references was discussed in Hobbs
(1979). Here we will restrict our attention to their use ir resolving norninal
compounds.

Let us consider “oil sample” again. Suppose we have already inferred the
existence of the oil—oil(z). Suppose also we have assumed by the referential
implicature the existence of a sample y of something z—sample(y,z). We
need to prove nn(z,y). Axiom (3) tells us that if y is a sample of z then
there is an nn relation between them. The only thing required for a proof is
therefore an assumption that the oil y and the implicit second argument z of
sample are identical. Since this would lead to a good interpretation, we are
tempted to do this. However, we would like to check for consistency first.
When we do some simple type checking, we find that 2, since it can have a
sample taken of it, must be a material, and we also find that the oil z is a
material. This does not prove consistency, but it provides a coincidence of
properties that at least makes an inconsistency less likely. So we go ahead
and make the identification. A problem with this approach is that it is not
clear how the drawing of identity implicatures can be triggered or controlled.

Grice (1975) gave the name “conversational implicature” to an assump-
tion one had to make simply in order to get a good interpretation of a
sentence. Referential implicatures and identity implicatures are particularly
elementary and widespread cases of such assumptions.

4.4 Abduction and Redundancy

We are currently exploring a different approach to this whole family of
problems—abductive reasoning. Pople (1973) and Cox and Pietrzykowski
(1986) have proposed abductive reasoning as a means for diagnosis in expert
systems. Abductive reasoning is reasoning to the best explanation. If we
know g(a) and we know (Vz)p(z) D ¢(z), then abductive reasoning leads us
to conclude p(a). Intuitively, p{a) is our best guess for why the observed g(a)
is true. The problem with this is choosing the best p(a) among a conceiv-
ably large set of possibilities. Both Pople (1973) and Cox and Pietrzykowski
(1986) proposed choosing the most specific unprovable atom as the best ex-
planation. Thus, an abscess in the liver is a better explanation than a pain
in the chest. Stickel (1987) points out problems with this and argues that
often in natural language interpretation, the least specific unprovable atom
is the mosi appropiiate one to be assumed. Thus, if “a 8uid” is mentioned,
we should not assume it is lube oil.
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A generalization of this kind of abductive capability is now being imple-
mented in the KADS theorem prover. It will allow us to recast the whole
problem of definite and indefinite reference. The interpretation expression
will be constructed as before. Instead of referential implicatures being as-
serted with their associated costs, the same costs would now be attached to
the atoms to be proved as the cost of simply assuming them. The atoms
will be assumed with their most specific bindings, which will perform the
function of including the antecedents in the referential implicatures. There-
fore, if a definite reference is resolvable with respect to the knowledge base,
it will be resolved with a proof considerably cheaper than one requiring the
assumption of the existence of an entity of that description. However, if it
is not resolvable, its existence will be assumed.

This approach also gives us a way of dealing with examples like

Investigation revealed adequate lube oil saturated with metal
particles.

Here, “lube oil” is given information, while “adequate” and “saturated with
metal particles” are new. Under the abductive approach Iube-oil(z) will be
resolved with the corresponding atom in the domain model, the binding will
propagate to adequate(z) and saturate(ps,z), and these instantiated atoms
will then be assumed. Solving this problem using referential implicatures
would be extremely cumbersome.

There is a further possible benefit from the abductive approach; it may
take the place of identity implicatures and allow us at last to exploit the
natura] redundancy of all discourse. An example can illustrate this best.
Consider the sentence

Inspection of lube oil filter revealed metal particles.

There are several coreference problems involving implicit arguments. We
would like to be able to discover that the person doing the inspection was
the same as the person to whom the particles were revealed, and we would
like to know that the metal particles were found in the lube oil filter. This in-
formation is not explicit in the sentence. The general problem is to discover
the coreference relations among arguments in syntactically independent re-
gions of a sentence.

Let us unpack the words in the sentence to see the overlap of semantic
content. If z inspects y, then z looks at y in order that this looking will
cause z to learn some property relevant to the function of y. In order to
avoid quantifying over predicates, let us assume an analysis of location, or
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at, that allows properties metaphorically to be located at entities. Then we
can state formally,

(V elvz)y)inspedl(el,xa y) =
(3 ez, €3,2,€4)l00k-at'(e1,2,y) A cause(e;,es)
Alearn'(ez,z,e3) A at'(ea,z,y) A relevant-to(es,eq)
A function(es,y)

If an event e; reveals z to z, then there is a y such that e; causes z to
learn that z is at y. Formally,

(Vey,z,2)reveal(e;,2,2) =
(3 ez, €3,y)cause(e, e2) A learn'(eqy, z,e3) A at'(es, z,y)

A filter is something whose function is to remove particles. Formally,

(V €6,Y, w)filter'(ee, Y, w) =
(3 e4,2,8) function(eq,y) A remove(eq,y,z,w) A particle(z)
Atypical-element(z, s)

If y removes z from w, then there is a change from z’s being in w to 2’s
being at y.

(V eq, ¥, 2, w)remove’ (e, y, z,w) =
(3 eBaeS)Change'(e‘heS’efi) A in,(eB,zaw) A at'(e3?za y)

Finally, let us say the end point of a change is relevant to the change.
(Ve4,e8,e3)change’(e4,es,'e3) D relevant-to(ez,e4)
Now the interpretation expression will include

inspect'(ey,z1,y) Areveal(ey, z,z2) A filter'(es, y,w) A particle(z)
Atypical-element(z,s)

If the above axioms are used to expand this expression, then the operation
that Stickel calls “factoring” and Cox and Pietrzykowski call “synthesis” can
apply; we can unify goal atoms wherever possible. We can thus unify the
variables as indicated in the way we have named them in the axioms. Further
suppose that atoms resulting from factoring have enhanced assumability,
since they will lead to minimal interpretations. If we assume those atoms,
then we will have concluded that the inspector z1 and the beneficiary z, of
the revealing are identical and that the particles are in the filter.
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One difficulty with is approach is the possible inefficiency introduced
by allowing the results of factoring to be assumable. Another difficulty is
whether the bidirectional implications in the above axioms are really justi-
fied, and how the procedure could be made to work if we only had implication
to the right. These issues are under investigation.

5 Implementation

In our implementation of the TACITUS system, we are beginning with the
minimal approach and building up slowly. As we implement the local prag-
matics operations, we are using a knowledge base containing only the axioms
that are needed for the test examples. Thus, it grows slowly as we try out
more and more texts. As we gain greater confidence in the pragmatics op-
erations, we move more and more of the axioms from our commonsense and
domain knowledge bases into the system’s knowledge base. Our initial ver-
sions of the pragmatics operations are, for the most part, fairly standard
techniques recast into our abstract framework. When the knowledge base
has reached a significant size, we will begin experimenting with more general
solutions and with various constraints on those general solutions.

To see what the program does, let us examine its output for one sentence.

Tacitus> operator was unable to maintain lo pressure to sac

“Lo” is an abbreviation for “lube 0il” and “sac” is an abbreviation for “start-
ing air compressor”. The sentence is parsed and six parses are found. Prepo-
sitional phrase attachment ambiguities are merged to reduce the number of
readings to four. The highest ranking parse is the correct one because the
adjective complement interpretation is favored over the purpose clause in-
terpretation for infinitive clauses, and because the attachment of “to sac” to
“pressure” is favored both by a heuristic that favors right attachment and
one that favors argument prepositions attached to their relational nouns.
The logical form is produced for this parse. It can be read “In the past
there was a condition E12 which is the condition of X1 being unable to do
E3 where E3 is the possible event of X1, who is the operator, maintaining X4,
which is the pressure of something Y1 at X10, which is the starting air com-
pressor (and, by the way, is not identical to X4), and there is some implicit
relation NN between X6, which is lube oil, and X4.
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OPERATOR PAST1 BE UNABLE TO MAINTAIN LO PRESSURE TO SAC
six parses were found

After merging ambiguities, there are four logical forms
The Highest Ranking LF:
(E (E13 E12 E2 X4 Ei1 X10 Y1 E5 E7 X6 E8 E3 X1)
(PAST! Ei3
(E12 (UNABLE! E12 X1
(E3 (MAINTAIN! E3
(X1 (OPERATOR! E2 X1))
(X4 (PRESSURE! E5 X4 Y1
(X10 (SAC! E11 X10)
(NOT= X10 (X4))))
(NN! E8 (X6 (LUBE-0IL! E7 X6))
NN

The sentence is interpreted from the inside out, so the first problem is
finding the reference of “operator”. “BARE” means there is no determiner.

Reference Problem: X1: treated as type BARE
Il
Prove: (E (x1 e2)

(Operator! e2 x1))

Ii.v

The reference is resolved by unifying x1 with the constant opr1 in the axioms
that encode the domain model. opr1 has the property Operator.

Reference Resolved:
x1 = opril

This was established by inferring the following proposition from the axioms.
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Inferred the following propositions:
(Operator! operator-nessi opri)

The next problem is the reference of “sac”. We do not use the non-
coreference information encoded by Not= at the present time. It is always
assumed to be true. The reference is resolved by identifying the sac as the
one mentioned in the domain model.

Reference Problem: X10: treated as type BARE
IiI|
Prove: (E (x10 ell x4)
(AND (Not= x10 cons(x4,nil))
(Sac! ell x10)))

IDx|.VV

Reference Resolved:
x10 = saci

Inferred the following proposi,ions:
(Not= sacl cons(X195,nil))
(Sac! sac-nessi1 sacl)

The next problem, moving from the inside out, is to satisfy the con-
straints the word “pressure” places on its arguments. A coercion constant
k3, which is related to the entity sacl that we have already resolved X10
to, is introduced to take care of the possibility of metonymy. The word
“pressure” requires that y1 must be a fluid that can be located at k3.

Metonymy .Problem:
(PRESSURE! E5 X4 Y1 X10)
ITITH{1TY
Prove: (E (k3 yi k5 k4 x4)
(AND (Not= sacl cons(x4,nil))

(Fluid! k4 yi)

(At! k5 y1 k3)
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(Related k3 sacl)))
The stars and bars tell the user that the theorem prover is working away:.
Dok | dkokok | ok | ok |k |k ] T %

One way of being related is being a part of, and the bearings are a part of
the sac, and the only fluid that the system currently knows about that can
be at something related to the sac is the lube oil. So it is determined that
it must be the pressure of the lube oil at the bearings, which are a part of
the sac. Had the system also known about air, it could have come up with a
different interpretation. This is an example where the compound nominal,
and thus the reference, problem for “pressure” should have been done at the
same time, and where exploiting the redundancy of information encoded in
the words “lube oil” and “pressure” would have helped.

The instantiated inference steps are listed. Lube oil is known to be a
fluid because oil is and lube oil is oil. It is known to be at the bearings
because it is known that the pump transmits lube oil from the pump to the
bearings, and the being located is the end state of that transmission. The
bearings are a part of the sac because they are a part of the lube oil system,
which is a part of the sac.

Metonymy Resolved:
yi1 = lube-oill
x10 = sacl

k3 = bearingsi

Inferred the following propositions:

(Partof bearingsi saci)

(Not= sacl cons(X206,nil))

(Fluid! k4 lube-o0ill)

(0il! oil-ness-11(.) lube-o0ill)

(Lube-0il! lube-oil-nessi lube-o0ill)

(At! k5 lube-0ill bearings1)

(Transmit! transmit~ness2 pumpl lube-0ili pumpi
bearingsi)

(Related bearingsi sacl)
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(Component! component-nessi losysl sacl)
(Component! component-ness3 bearingsi losys1)
(Partof losysl sacl)

The fact that there has been a coercion is reported to the user.
Coercion: (Pressure! e5 x4 y1 k3)

Next is the reference problem for “lube 0il”, which is solved in the same
way as the two previous reference problems.

Reference Problem: X6: treated as type BARE
TI*|I*]|
Prove: (E (x6 e7)

(Lube-0il! e7 x6))

Il.ww

Reference Resolved:
x6 = lube-0ill

Inferred the following propositions:
(Lube-0il! lube-oil-nessi lube-o0ill)

The reference problem for “pressure” is addressed with its arguments
instantiated with the values that have already been discovered. If this were
inconsistent, the system would back up, and try to prove the fail-soft ver-
sion of the interpretation expression described in Section 3.2. The compound
nominal interpretation problem is dealt with here as well. It is solved be-
cause the relational noun - argument relation is one possible way for Nn to
be true.

Reference Problem: X4: treated as type BARE
IITTi=11)

Prove: (E (x4 e5 e8)
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(AND (Nn! e8 lube-0ilil x4)
(Pressure! e5 x4 lube-oill bearingsi)))

T | ok ok | ] .| ] 1%] |

Reference Resolved:
x4 = pressurel

x6 = lube-o0ill
k3 = bearingsi
y1 = lube-o0ill

Inferred the following propositions:
(Nn! e8 lube-0ill pressurel)
(Pressure! pressure-nessi pressurel lube-oill
bearingsi1)

The metonymy problem for the predicate MAINTAIN is handled next. For
something to be maintained, it must be an eventuality that is desired by the
maintainer. The adequacy of the lube oil pressure, being a normal condition,
is desired by the operator. Hence, “maintain lube oil pressure” is coerced
into “maintain the adequacy of lube oil pressure”.

Metonymy Problem: (MAINTAIN! E3 X1 X4)
IITID! | 1ID*|
Prove: (E (k10 k11 k12)
(AND (Eventuality ki1)
(Desire! k12 k10 ki1)
(Related k11 pressurel)
(Related k10 opri)))

ID* |*kx|*x| . T.%
Metonymy Resolved:
x4 = pressurel

ki1 = adequate-nessi
x1 = opril

24




Inferred the following propositions:
(Pressure! pressure-nessi pressurel lube-oill
bearingsi)
(Adequate! adequate-nessi pressurel)
(Related oprl opri)
(Desire! ki2 oprl adequate-nessi)
(Normal adequate-nessi)
(Related adequate-nessi pressurel)

Coercion: (Maintain! e3 oprl kii)

The system also tries to solve nonnominal reference problems. Here it
seeks to determine if it already knows about a maintaining event. It does
not, so a referential implicature introduces it as a new entity.

Reference Problem: E3: treated as type EVENT
I|%|ID*|
Prove: (E (e3)

(Maintain! e3 opri adequate-nessi))

Il.x

New Entity Introduced:
E3

The constraint UNABLE places on its arguments is that E3 must be an
eventuality. This is verified. A possible coercion is assumed by introducing
the coercion constant k15, but identity is one way of being coerced.

Metonymy Problem: (UNABLE! E12 X1 E3)
IID|IDx|
Prove: (E (k15)
(AND (Eventuality ki5)
(Related k15 maintain-ness-72)))
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Metonymy Resolved:
e3 = maintain-ness-72
k15 = maintain-ness-72

Inferred the following propositions:
(Related e3 e3)

Nonnominal reference is determined for the inability as well, and it is
determined to be new.

Reference Problem: E12: treated as type EVENT
I|*|IDx|
Prove: (E (el2)

(Unable! e12 oprl maintain-ness-72))
I|.x

New Entity Introduced:
E12

I=|*]

This completes the interpretation of the sentence. All of the properties
that have been inferred are listed. Those properties that required referential
implicatures are new information and are listed as such.

INTERPRETATION OF SENTENCE:

New Information:

e13: : (Past! e13 ei2)
el2: (Unable! e12 opril e3)
e3: (Maintain! e3 oprl adequate-nessi)
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opri: (Operator! operator-nessi opri)
(Desire! k12 opri adequate-nessi)
adequate-nessi: (Adequate! adequate-nessl pressurel)
(Normal adequate-nessi)
(Related adequate-nessi pressurel)
pressurel: (Pressure! pressure-nessl pressurel
lube-0ill bearingsi)
(Nn! e8 lube-o0ill pressurel)
lube-0ill: (Fluid! k4 lube-o0ill)
(0il! oil-ness-11 lube-o0ill)
(Lube-0il! lube-oil-nessi lube-o0ill)
(At! k5 lube-0ill bearingsi)
(Transmit! transmit-ness2 pumpl lube-0ill
pumpl bearingsi)
bearingsi: (Component! component-ness3 bearingsi
. losys1)
(Related bearingsi saci)
(Partof bearingsl sacl)

losysi: (Partof losysl sacl)
(Component! component-nessi losysl sacl)
saci: (Sac! sac-nessl sacl)
pumpl:
I=I=I=I=1=I=I=I=1=I=I=I=DDD|{{| 1111111}

The interpretation of the sentence makes no assumptions about the exis-
tential status of the various eventualities conveyed by the sentence. This is
dore in a final phase of processing. The highest level eventuality is assumed
to exist, and decisions are propagated down from there. Thus, since the
past-ness exists, the inability exists. Since the inability exists, the main-
taining does not exist. Since it does not exist, neither does the adequacy.
That is all that can be concluded for sure. Simply as a heuristic, the other
eventualities are assumed to exist.

Assuming the following eventualities do exist:
E12, E13, E8, K12, K4, K5, LUBE-DIL-NESS1,
OPERATOR-NESS1, PRESSURE-NESS1, SAC-NESS1
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Assuming the following eventualities do not exist:
ADEQUATE-NESS1, E3
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ABSTRACT

An account is given of the appropriateness conditions for definite reference,
in terms of the operations of inference and implicature. It is shown how a
number of problematic cases noticed by Hawkins can be explained in this
framework. In addition, the use of unresolvable definite noun phrases as a
literary device and definite noun phrases with nonrestrictive material can
be explained within the same framework.




Implicature and Definite Reference

Jerry R. Hobbs
Artificial Intelligence Center
SRI International

When someone is faced with a linguistic example, or any other text, his
problem is to make sense of it. The question for those of us interested in
the processes that underlie language use is, what must one do to make sense
out of the example? More generally, what ways do people have of making
sense out of texts?

There are two ways that I will focus on in these remarks: “inference” and
“implicature”. I use these terms in a rather special sense. Let us assume the
hearer of a text has a knowledge base, represented as expressions in some
formal logic, some of which is mutual knowledge between the speaker and
hearer. “Inference” is the following process:

If P is mutually known,
P O @Q is mutually known, and
the discourse requires ),

then conclude Q.

One can view much work in natural language processing as an effort to
specify what is meant by “the discourse requires ¢)”. An elaboration of my
own ideas about this can be found in Hobbs (1980, 1985). These remarks
will present one aspect of that.

By “implicature” I mean the following process:

If P is mutually known,
P A R D Q is mutually known, and
the discourse requires @,
then assume R as mutually known ana
conclude Q.

I will refer to R as an “implicature” and to the process as “drawing R as
an implicature”. This terminology is not inconsistent with Grice’s notion of




conversational implicature—those things we assume to be true, or mutually
known, in order to see the conversaticn as coherent. “Implicature” is a pro-
cedural characterization of something that, at the functional or intentional
level, Lewis (1979) has called “accommodation”.

The definite noun phrase resolution problem provides an excellent ex-
ample of the discourse’s requiring a conclusion Q. In the standard account
of the resolution process (e.g., Grosz, 1975, 1978; Hobbs, 1975) the hearer
must infer from the context and mutual knowledge the existence of an entity
having the properties specified in the definite description. For example, in

I bought a car last week.
(1) The engine is already giving me trouble.

we use a rule in mutual knowledge like
(2) (Ve)ear(z) D (y)engine(y,)

to determine the referent of “the engine”. Here the expression car(C) in the
logical form of the first sentence would play the role of P in the definition of
“inference”, and P D @ is expression (2). The @ required by the discourse
is (3y)engine(y), since to resolve the reference of a definite noun phrase is to
prove constructively the (unique) existence of an entity of that description.

P may be found in the same noun phrase as the definite entity, as in
determinative definite noun phrases:

the engine of my car.

It may be in previous discourse, as in (1). It may be in the situational
context, as when, standing in a driveway, the speaker says,

The car is already giving me trouble.

Or it rray be in the mutual knowledge base—“the sun”, “the President”.
P D Q is usually either trivial, as in
I bought a car and a lawn mower last wezk.
The car is already giving me trouble.

or in the mutual knowledge base, as (2) would be. In the latter case, P D @
may introduce a new entity, as in (2); or it may not, as in

I bought a Ford last week.
The car is already giving me trouble.

(Vz)FPord(z) O car{s)




Having presented my vocabulary, I would like now to dispute an account
of definite reference proposed by Hawkins (1982).! What I have been refer-
ring to as P, he refers to as an “appropriate uniqueness set” or a “frame”.
What I have spoken of as P O @ being mutual knowledge he calls the
“identifiability of the referent”. To make the remainder of my critique as
convincing as possible, I will use my terminology rather than his.

Under this substitution, Hawkins argues that P is necessary and suffi-
cient for the definite article to be appropriate, whereas P O @ is neither
necessary nor sufficient. In contrast, I contend that both are required in the
resolution process; thus, presumably, both are required for appropriateness.
His data is convincing, so I am confronted with the problem of either ex-
plaining it or explaining it away. It is here that the process of implicature
goes to work for me.

First let us consider the argument against the necessity of P O Q, or,
equivalently, for the sufficiency of P. A key example comes from a doctor
who says about an injured right arm,

(3) You've severed the ulnar nerve.

P is the proposition arm(A), provided by context. If in mutual knowledge
there is a rule something like

(4) (Yz)(Ty)arm(z) D ulnar-nerve(y) A in(y,z)

i.e.,, an arm has an ulnar nerve in it, then this is the required P O @, and
resolution is straightfoward. Hawkins points out that even if we do not know
fact (4), example (3) is still felicitous. Therefore, P O Q is not required for
a definite reference to be felicitous.

I would argue to the contrary that fact (4) is required, but that we draw
it as an implicature. For

PA(PDQ)DQ

is an instance of P A R O @ in the definition of “implicature” given above,
and (4) is an instance of P D Q. We can thus assume (4) to be mutual
knowledge, and we will have satisfied the two requirements for definite noun
phrase resolution (and, incidentally, we will have learned (4) as well).

The appropriate implicatures do not necessarily present themselves, of
course. We need a means of arriving at the right things to draw as impli-
catures. The most important factor is that they are the missing pieces in

'For a more extensive and more widely available treatment of definite reference, see
Hawkns (1978).



a proof that would lead to a good interpretztion. But that is not enough.
We might expect analogy and specialization to be relevant here as well. In
(3), we know that body parts, including arms, contain nerves, so the ulnar
nerve is probably a nerve that the arm contains.

Where we cannot find the appropriate implicature P O @, we cannot
make sense out of the definite reference. To see this, consider another of
Hawkins’s examples. On a rocket ship we can be felicitously told

This is the goosh-injecting tyroid.

even though we don’t know that rockets have goosh-injecting tyroids, be-
cause we can recognize the “rocket” frame. Again we know P but not
P O Q. But for all the complexity of rockets, our “rocket” frame is not
all that complex: rockets have a particular shape and move in a particular
way; they have fuel, and they have lots of parts whose names are likely to
be unfamiliar. The word “injecting”, the onomatopoeia of “goosh”, and the
scientific ring to the “-0id” ending all suggest that the reference is to one of
those parts.

But suppose one were to show me a block of code in a computer program
and say,

(5) This is the goosh-injecting tyroid.

The definite reference would not be felicitous, even though I would rec-
ognize the “computer program” frame. I know too much about computer
programs; the required implicature—that computer programs have goosh-
injecting tyroids—would not be available.

Consider another example:

(6) In Bulgaria, the travelers encountered the hayduk.

Most readers won’t know whether the hayduk is a climatic condition, a
ruler, a kind of bandit, a food, 2 kind of hotel, or what. Even though we
can recognize the “Bulgaria” frame, the definite reference doesn’t work. The
context of occurrence gives us too little and what we know about countries
gives us too much for us to be able to arrive at the right implicature.

We can summarize the examples in the following chart:




1. P arm
P > @: arm has ulnar nerve (available implicature)
Definite reference felicitous.

2. P: rocket
P rocket has goosh-injecting tyroid (available implicature)

¥
Q

Definite reference felicitous.

3. P: computer program
*P D @: computer program has goosh-injecting tyroid (not an
available implicature)

Definite reference not felicitous.

4. P: Bulgaria
*P D Q: Bulgaria has hayduk (not an available implicature)
Definite reference not felicitous.

These examples show that P is sufficient for felicitous definite reference if
and only if P O @ is mutually known or can be drawn as an implicature.
When it cannot be, as in (5) and (6), the definite reference fails, even though
P is known.

If this account is correct, then we ought also to be able to find cases in
which P is drawn as an implicature when P O @ is mutually known. This
would constitute an argument against Hawkins’s claim that P is necessary,
or alternatively, that P D @ is not sufficient.

But Hawkins himself provides just such a case. He claims that although
we can point to a clutch on a car and say

(7) That’s the clutch,

we cannot pick up the same object and say (7) after the car has been broken
down for scrap and its pieces are lying in a heap. But in fact this is possible.
Suppose A has broken down the car and B arrives, seeing only a pile of
scrap metal. B picks up the object and asks what it is, and A replies with
(7). To make sense out of the definite reference, B draws as an implicature
the existence of the dismembered car. He may even reply

Oh, did all this used to be a car?

Here we have




Hawkins's case:

*P: car (implicature not drawn)

P D @: car has clutch
Definite reference not felicitous.

My case:

P: car (implicature drawn)

P D @Q: car has clutch
Definite reference felicitous.

Another example: Suppose I start telling you a story about the terrible
hotel I am staying in, strictly as a funny story, and you respond by saying
“The solution is to come and stay with us.” To make sense out of your defi-
nite reference, I have to draw as an implicature that it is mutual knowledge
that my situation is describable as a “problem”, something which, seasoned
traveller that I am, had not occurred to me before. Schematically,

P: problem (implicature drawn)
P > @: problem has solution
Definite reference felicitous.

A related example was suggested by Herb Clark (personal communica-
tion). A student enters his professor’s office late and says

I’'m sorry ’m late.
I was coming over here as fast as I could, but then the chain
broke.

The professor is likely to draw the implicature that the student had been
riding a bicycle. Schematically,

P: bike (implicature drawn)
P D @Q: bike has chain

Definite reference feticitous.




One day I wandered into a colleague’s office where several people were
standing around inspecting a computer terminal, a Heath-19, whose cover

‘was removed and which my colleague had just modified. I listened to the

conversation quite a while, not really understanding what was going on,
until someone asked,

Where’s the circuitry for the edit key?

Then I knew the terminal had been modified to make it easier to use the
EMACS editor. I knew that EMACS required an edit key and that the
Heath-19 lacked one, but prior to resolving “the edit key” by implicature, I
didn’t know that EMACS was central to the conversation. Schematically,

P: EMACS (implicature drawn)
P O @: EMACS requires edit key
Definite reference felicitous.

Finally, we can in this fashion account for a common literary device
employed in the opening sentences of novels—the use of an unresolvable
definite noun phrase:

Strether’s first question, when he reached the hotel, was about
his friend.

L. order to understand the reference to “the hotel”, we have to draw the
implicature that Strether is traveling, and we probably also assume he is
in a city. This exauple is particularly nice since it shows that my account
covers a case that has heretofore been dismissed simply as a literary device.
Schemutically,

P: traveling (implicature drawn)
P 5 @Q: -when traveling, one stays in a hotel
Definite zeference felicitous.

We thus see that both P und P D § are required to be mutually
kaown, but that either can be drawn as an implicature if the implicature is
sufficiently accessible.

Impiicature is not, just a rerovirce the hearer caa use to make sense out
of a toxt. It {3 also the source of a rhetorical device available to a speaker
for conveying that P or P D @Q should be mutual knowledge, even though
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it might not be. One example is the driving instructor who says “This is
the clutch.” The novelist’s opening sentence is another. Less pleasant uses
of implicature are also possible. For instance,

I saw my brother-in-law yesterday.
The bastard still owes me money.

To resolve the definite reference “the bastard”, we must draw the implicature
that the brother-in-law is a bastard.

If the implicature account of definite noun phrase resolution is to be
compelling, we should be able to find other problematic cases that it solves.
Of course text comprehension is rife with examples of implicature. But here
is one case thai is close to the examples we have just considered and that
used to be a bit of a puzzle to me. It is the problem of what might be
calied the “non-restrictive” definite description. We all agree about what
nonrestrictive relative clauses are: they provide new information instead of
identifying information.

Yesterday I saw my father, who is 70 years old.
The nonrestrictive material can be in the adjectival pesition as well:
Yesterday I saw my 70-year-old father.

It can even be in the head noun:

Nixon has appointed Henry Kissenger National Security Advisor.

(8) The Harvard professor has been in and out of government for much
of his career.

We even find nonrestrictive material in pronouns. We see this in the text

I saw my dentist yesterday.
She told me...

“She” decomposes into “human” and “female”. “Human” is used for identi-
fication and “female” is new information. This example shows that for the
nonsexists among us, “he” contains nonrestrictive material in the text

I saw my dentist yesterday.
He told me....




I once thought (Hobbs, 1976) that definite noun phrase resolution for
the nonrestrictive case involved somehow splitting the definite description
into the identifying material @ and the nonrestrictive material R, and using
Q@ for resolution. Thus, in (8) “professor” decomposes into “person”, which
is used for identification (Q), and “who teaches in a university”, which adds
new information (R). A similar example is from Clark (1975).

I walked into the room.
The chandelier shone brightly.

“Chandelier” decomposes into the restrictive “light” (@), which normal
rooms may be assumed to have, and the nonrestrictive “in the form of a
branching fixture holding a number of light bulbs.” A rule like the following
would then be used for the resclution:

(Vz)(3y)room(z) D light(y) A in(y,z)
But the process of implicature provides a more elegant solution. Rather
than split the definite description initially into  and R, we attempt to do

the resolution on @ A R, the undecomposed definite description. If P O @
is mutually known, then so is

PARDQAR

Then if P is known, we can draw R as an implicature and conclude Q A R,
as required. Thus the nonrestrictive case requires no special treatment at
all. It is handled by the mechanisms already proposed.

More needs to be said about the process of implicature than I am pre-
pared to say. As it is defined, it is a very powerful operation. We must
discover constraints on its application, for otherwise any definite reference
would be felicitous. Unfortunately, the only sensible suggestion I can offer
is that the implicature must be plausible for independent reasons. I gave
such plausibility arguments for the “ulnar nerve” and “tyroid” examples. A
bicycle is not an unusual means to use to travel to a professor’s office. It is
not unreasonable to want to use the EMACS editor on a Heath-19 termi-
nal. And so on. But working out in detail what “plausible for independent
reasons” means will require a much larger framework than the one I have
constructed here.
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Abstract

..u approach to abductive inference dsveloped in the TAC-
ITUS project has resulted in a dramatic simplification of
bow the problem of interpreting texts is conceptualized. Its
use in solving the Jocal pragmatics problems of reference,
compound nominals, syntactic ambiguity, and metonymy
is deseribed and illustrated. It also suggests an elegant and
thorough integration of syntax, semantics, and pragmatics.

1 Introduction

Abductive inference is inference to the best explanation.
The process of interpreting sentences in discourse can be
viewed as the process of providing the best explanation of
why the sentences would be true. In the TACITUS Project
at SRI, we have developed a scheme for abductive inference
that yields a significant simplification in the description of
such interpretation processes and a significant extension
of the range of phenomena that can be captured. It has
been implemented in the TACITUS System (Stickel, 1982;
Hobbs, 1986; Hobbs and Martin, 1987) and has been and
is being used to solve a variety of interpretation problems
in casualty reports, which are messages about breakdowns
in machinery, as well as in other texts.}

It is well-known that people understand discourse so well
because they know so much. Accordingly, the aim of the
TACITUS Project has been to investigate bow knowledge
is used in the interpretation of discourse. This has involved
building s large knowledge base of commonsense and do-
main knowledge (see Hobbs et al., 1986), and developing
procedures for using this knowledge for the interpretation
of discourse. In the latter effort, we have concentrated on
problems in Jocal pragmatics, specifically, the problems of
reference resolution, the interpretation of compound nom-
inals, the resolution of some kinds of syntactic ambiguity,
and metonymy resolution. OQur approach to thess problems
is the focus of this paper.

we have develonad what the interpre-

in the framewosk e have vl opeq,

tation of a sentence is can be described very concisely:

1Charnisk (1686) and Norvig (1987) have also applied abductive
inference techoiques to discourse interpretation.
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To interpret a sentence:

(1) Derive the logical form of the senteuce,
together with the constraints that predicates
impose on their arguments,
allowing for coercions,
Merging redundancies where possible,
Making assumptions where necessary.

By the first line we mean “derive in the logical sense, or
prove from the predicate calculus axioms in the knowledge
base, the logical form that has been produced by syntactic
analysis a.d semantic translation of the sentence.”

In a discourse situation, the speaker and hearer both
have their sets of private beliefs, and there is a large over-
lapping set of mutual beliefs. Ap utterance stands with one
foot in mutual belief and one foot in the speaker’s private
beliefs. It is a bid to extend the area of mutual belief to
include some private beliefs of the speaker’s. It is anchored
referentially in mutual belief, and when we derive the log-
cal form and the constraints, we are recognizing this refer-
eatial apchor, This is the given information, the definite,
the presupposed. Where it is necessary to make assump-
tions, the information comes from the spesker's private
beliefs, and hence is the new information, the indefinite,
the asserted. Merging redundancies is a way of getting a
minimal, and hence a best, interpretation.?

In Section 2 of this paper, we justify the first clause of
the above characterization by showing that solving local
pragmatics problems is equivalent to proving the logical
form plus the constraints. In Section 3, we justify the last
two clauses by describing our scheme of abductive infer-
ence. In Section 4 we provide several examples. In Section
5 we describe briefly the type hierarchy that is essential
for making abduction work. In Section 6 we discuss future

3nterpreting indirect speech acts, such as “It’s cold i here,” mean-
ing *Close the indow,” is 5ot & wuBisexample to the nrincinie that
the minimal interpretation is the best interpretation, but rather can
be seen as & matter of achieving the minimal interpretation cohere:

with the interests of the speaker.

g
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2 Local Pragmatics

‘The four local pragmatics problems we have addressed can
be illustrated by the followi.ig “sentence” from the casualty
reports:

(2) Disengaged compreseor after lube-oil alarm.

Identifying the compressor and the slarm are reference
resolution problems. Determining the implicit relation
between “lube-oil” and “alarm” is the problem of com-
pound nominal interpretation. Deciding whether “af-
ter lube-oil alarm™ modifies the compressor or the disen-
gaging is a problem in syntactic ambiguity resolution.
The preposition “after” requires an event or condition as
its object and this forces us to coerce “lube-oil alarm™ into
“the sounding of the lube-oil alarm”; this is an example
of metonyry resolution. We wish to show that solving
the first three of these problems amounts to deriving the
logical form of the sentence. Solving the fourth amounts to
deriving the constraints predicates impose on their argu-
ments, allowing for coercions. For each of these problems,
our approach is to frame a logical expression whose deriva-
tion, cr proof, constitutes an interpretation.

Reference: To resolve the reference of “compressor” in
sentence (1), we need to prove (constructively) the follow-
ing logical expression:

(3) (3c)compressor(c)

I{, for example, we prove this expression by using axioms
that say C, is a starting air compressor, and that a starting
air compressor is 8 compressor, then we have resolved the
reference of “compressor” to C).

In general, we would expect definite noun phrases to
refer to entities the hearer already knows about and can
identify, and indefinite noun phrases to refer to new enti-
ties the speaker is introducing. However, in the casuelty
reports most noun phrases have no determiner. There are
sentences, such as

Retained oil sample and £lter for future analysis.

where “sample” is indefinite, or new information, and “£l-
ter” is definite, or already known to the hearer. In this
case, we try to prove the existence of both the sample and
the filter. When we fail to prove the existence of the sam-
ple, we know that it is new, and we simply azsume its
existence.

Elements in a sentence other than nominals cap also
function referentially. In

Alarm sounded.
Alarm  activated during routine start of
compressor.
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one can argue that the activation is the same as. or at Jeast
implicit in, the sounding Hence, in addition to trying
to derive expressions such as (3) for nomina! reference,
for peesible non-nominal reference we try to prove similar
expressions.

(3...¢,a,...)... A activate'(e,a) A ..

That iz, we wish to derive the existence, from background
knowledge or the previous text, of some known or implied
sctivation. Most, but certainly not all, information con-
veyed non-nominally is new, and hence will be assumed.
Compound Nominals: To resolve the reference of the
noun phrase “Jube-cil alarm”, we need to find two entities
o and g with the appropriste properties. The entity o must
be lube oil, a must be sn alarm, and there must be some
implicit relation between them. Let us call that implicit
relation rnn. Then the expression that must be proved is

(30,a,nn)lube-oil(0) A alarm(a) A nn(o,a)

In the proof, instantiating nn amounts to interpreting the
implicit relation between the two nouns in the compound
nominal. Compound nominal interpretation is thus just a
special case of reference resolution.

Treating nn as & predicate variable in this way seems to
indicate that the relation between the two nouns can be
anything, and there are good reesons for beiieving this to
be the cazz (e.g., Downing, 1877). In “lube-oil alarm", for
example, the relation is

Az, y [y sounds if pressure of z drops too low)

However, in our implementation we use & first-order sim-
ulstion of this approach. The symbol nn is treated as a
predicate constant, and the most commop possible rela-
tions (see Levi, 1978) are -ncoded in axioms. The axiom

(Vz,y)part(y, 2) D nu(z,y)

allows interpretation of compound nominals of the form
“gwhole> <part>”, such as “filter element”. Axioms of
the form

(Vz,y)sample(y, z) D nn(z,y)

handle the very common case in which the head noun is
a relational noun and the prenominal noun fills one of its
roles, 23 in “oil sample”. Complex relations such as the
one in “lube-oil alarm™ can sometimes be glossed as “for™.

(Vz,y)for(y, 2) D nn(z,y)

Syntactic Ambiguity: Some of the most com-
mon types of syntactic ambiguity, including prepositional
phrase and other attachment ambiguities and very com-
pound pominal ambiguities, can be converted into ron-
strained coreference problems (see Bear and Hobbs, 1988).

3See Bobbe (1985a) for explanation of this notation for events.
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Vor example, 1n (2) the first argument of after is taken tc
L + an existentially quantified vanable which is equal to &-
ther the compressor or the alarm. The logical form would
thus include

(3...e,e0908,...) ... Aafter(y,a) Ay € {,¢)
AL

That is, however after(y, a) is proved or assumed, y must
be equal to either the compressor ¢ or the disengaging e.
This kind of ambiguity is often solved as a byproduct of the
resolution of metonymy or of the merging of redundandies

Metonymy: Predicates impose constraints on their
arguments that are often violated. When they ase vio-
lated, the arguments must be coerced into something re-
lated which satisfies the constraints This is the process of
metonymy resolution Let us suppose, for example, that
in sentence (2), the predicate after requires its argumerts
to be events:

after(e;,e2) : event(ey) A event(e;)

To allow for coercions, the logical form of the sentence is
altered by replacing the explicit arguments by “coercion
varisbles” which satisfy the constraints and which are re-
lated somehow to the explicit arguments. Thus the altered
logical form for (2) would include

(3...kka,y,a,rely,rely,...) ... A after(ky, ks)
Aevent(ky) A rely(ky,y)
Aevent(k;) A rely(k;,8) A ...

As in the most general approach to compound nominal
interpretation, this treatment is second-order, and suggests
that any relation at all can hold between the implicit and
explicit arguments. Nunberg (1978), among others, has in
fact argued just this point. However, in our implementa-
tion, we are using & first-order simulation. The symbol rel
is treated as a predicate constant, and there are a num-
ber of axioms that specify what the possible coercions are.
Identity is one possible relation, since the explicit argu-
ments could in fact satisfy the constraints.

(Vz)rel(z, z) '
In general, where this works, it will lead to the best inter-

pretation. We can also coerce from a whole to a part and
from an object to its function. Hence,

(Vz,y)part(z,y) O rel(z,y)
(Vz,e)function(e,z) D rel(e,z)

Putting it all together, we find that to solve all the local
pragmatics problems posed by sentence (2), we must derive
the following expression:

(3 €,Z,C, kh kh y,a, O)P“t(c)
Adisengage'(e,z,¢)
Acompressor(c) A after(k,,k;)
Aevent(ky) A rel(ky,y) Ay € {c,e}
Aevent(k;) A rel(k;,a) A alarm(a)
Ann(o,a) A lube-oil(o)
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But thus is just the logical form of the sentence! togethe:
with the constraints that predicates impose on their ar
guments, allowing for coercions That is, it is the first
half of our characterization (1) of what it is to interpret a
sentence.

When parts of this expression cannot be derived, as-
sumptions must be made, and these assumptions are taken
to be the new information. The likelihood of different
atoms in this expression being new information varies ac-
cording to how the information is presented, linguistically.
The main verb is more likely to convey new information
than a definite noun phrase. Thus, we assign a cost to
each of the atoms~—the cost of assuming that atom. This
cost 15 expressed in the same currency in which other fac-
tors involved in the “goodness” of an interpretation are
expressed, among these factors are likely to be the length
of the proofs used and the sahence of the axioms they rely
on. Since a definite noun phrase is generally used 1eferen-
tially, an interpretation that simply assumes the existence
of the referent and thus fails to identify it should be an ex-
pensive one. It is therefore given a high assumability cost.
For purposes of concreteness, let's call this $10. Indefinite
noun phrases are not usually used referentially, so they are
given a low cost, say, $1. Bare noun phrases are given
an intermediate cost, say, $5. Propositions presented non-
nominally are usually new information, so they are given
a low cost, say, $3. One does not usually use selectional
constraints to convey new information, so they are given
the same cost as definite noun phrases. Coercion relations
and the compound nominal relations are given a very high
cost, say, $20, since to assume them is to fail to solve the
interpretation problem. If we superscript the atoms in the
above logical form by their assumability costs, we get the
following expression:

(Be,2,¢, k1, k3, y,0,0)Past(e)®
Adisengage'(e, 2, )P
Acompressor(c)® A after(k,, k)%
Aevent(k, )80 A rel(k,,y)*® A y € {c,¢}
Acvent{k;)° A rel(k;,a)* A alarm(a)*
Ann(o,a)’® A lube-oil(o0)*

While this example gives a rough idea of the relative as.
sumability costs, the real costs must mesh well with the in-
ference: processes and thus must be determined experimen-
tally. The use of qumbers here and throughout the next
section constitutes one possible regime with the needed
properties. We are at present working, and with some
optimism, oo a semantics for the numbers and the proce-
dures that operate oo them. In the course of this work, we
may modify the procedures to an extent, but we expect to
retain their essential properties.

4For justification for this kund of logical form for seniences with
quantifiers and intensiona! operitors. see Bobbs{1983) and Hobbs
(1985s).




3 Abduction

We now argue for the last half of the characterization (1)
of interpretation.

Abduction is the process by which, from (Vz)p(z) D
¢(z) and g(A4), one concludes p{A) One can think of g(A)
as the observable evidence, of (Vz)p(z) D ¢(z) as a gen-
eral principle that could explain g{A)'s occurrence, and of
p(A) s the inferred, underlying cause of ¢(A). Of course,
this mode of inference is not valid; there may be many
possible such p(A)'s. Therefore, other criteria are needed
to choose among the possibilities. One obvious criterion
is consistency of p(A) with the rest of what one knows.
Two other criteria are what Thagard (1978) has called
consilience and simplicity. Roughly, simplicity is that p(A)
should be as small as possible, and consilience is that g(A)
should be 8s big as possible. We want to get more bang
for the buck, where g(A) is bang, and p(A) is buck.

There is a property of natural language discourse, no-
ticed by a number of linguists (e.g., Joos (1972), Wilks
(1972)), that suggests a role for simplicity and consilience
in jts interpretation—its high degree of redundancy. Con-
sider

Inspection of oil filter revealed metal porticles.

An inspection is a looking at that causes one fo learn 2
property relevant to the function of the inspected object.
The function of a filter is to capture particles from a fluid.
To revesl is to cguse one to learn. If we assume the two
causings to learn are identical, the two sets of particles
are identical, and the two functions are identical, then we
have explained the sentence in a minimal fashion. A small
number of inferences and assumptions bave explained a
large number of syntactically independent propositions in
the sentence. As a byproduct, we have moreover shown
that the inspector is the one to whom the particles are
revealed and that the particles are in the filter.

Another issue that arises in abduction is what might
be called the “informativeness-correctness tradeoff”. Most
previous uses of abduction in Al from a theorem-proving
perspective have been in diagnostic reasoning (e.g., Pople,
1973; Cox and Pietrzykowski, 1986), and they have as-
sumed “most specific abduction”. If we wish to explain
chest pains, it is not sufficient to assume the cause is sim-
ply chest pains, We want something more specific, such as
“pneumonia”. We want the most specific possible expla-
pation. In natural language processing, however, we often
want the least specific assumption. If there is a mention of
2 fluid, we do not necessarily want to assume it is lube oil.
Assuming simply the existence of a fluid may be the best
we can do.® However, if there is corroborating evidence,
we msy want to make a more specific assumption. In

Alarm sounded. Flow obstructed.

$Sometimes a cigar is just a cigar.
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we know the alarm is for the lube oil pressure, and this
provides evidence that the flow is not merely of a fluid but
of Jube oil. The more specific our assumptions are, the
more informative our interpretation is. The less specific
they are, the more likely they are to be correct.

We therefore need a scheme of abductive inference with
three features. First, it should be possible for goal ex-
pressions to be assumable, at varying costs. Second, there
should be the possibility of making assumptions at van-
ous levels of specificity. Third, there should be a wa; of
exploiting the natural redundancy of texts.

We have devised just such an abduction scheme.® First.
every conjunct in the logical form of the sentence is given
an assumability cost, as deseribed at the end of Section 2.
Second, this cost is passed back to the antecedents i, Horn
clauses by assigning weights to them. Axioms are stated
A the form

) PMAPMDQ

This says that P, and P; imply Q, but also that if the
cost of assuming @ is ¢, then the cost of assuming P, is
wye, and [« wrat of assuming P; is wae. Third, factoring
or sy:shesis .. allowed. That is, goa! wis may be unified,
in whick case .he resulting wif is given the smaller of the
costs of the input wifs. This feature leads to minimality
through the exploitation of redundancy.

Note that in (4), if w, + w3 < 1, most specific abduction
is favored—why assume Q when it is cheaper to assume P,
and P;. fwy+4w; > 1, least specific abduction is favored—
why assume P; and P; when it is cheaper to assume Q. But
in

PEAPEDQ

if Py has already been derived, it is cheaper to assume P;
than Q. P, has provided evidence for Q, end sssuming the
“remainder” P; of the pecessary evidence for Q should be
cheaper.

Factoring can also override least specific abduction.
Suppose we have the axioms

Pf‘APz‘BDQI
PPAPEDQ

and we wish to derive @, A Q3, where each conjunct has an
assumability cost of $10. Then assuming Q A Q; will cost
$20, whereas assuming P, A P; A Py will cost only $18, since
the two instances of P; can be unified. Thus, the abduction
scheme allows us to adopt tkz careful policy of favoring
least specific abduction while also allowing us to exploit
the redundancy of texts for more specific interpretations
In the above examples we bave used equal weights on
the conjuncts in the antecedents. It is more reasonable,

*Tbe abduction scheme 15 due to Mark Stickel, and it, or & vanant
of it, is described at greater length 1 Stickel (1988).




however, to assign the weights according to the “seman-
tic contribution™ each conjunct makes to the consequent.
Consider, for example, the axiom

(Vz)car(z)® A no-top(z)* D convertible(z)

We have an intuitive sense that car contributes more to
convertible than no-top does.” In principle, the weights in
(4) should be a function of the probabilities that instances
of the concept P, are instances of the concept Q in the cor-
pus of wnterest. In practice, all we can do is assign weights
by a rough, intuitive sense of semantic contribution, and
refine them by successive approximation on a representa.
tive sample of the corpus.

One would think that since we are deriving the logical
form of the sentence, rather than determining what can be
inferred from the logical form of the sentence, we could not
use superset information in processing the sentence. That
is, since we are back-chaining from the propositions in the
logical form, the fact that, say, lube oil is a fluid, which
would be expressed as

(5) (Vz)lube-oil(z) D fluid(z)
could not play a role in the analysis. Thus, in the text
Flow obstructed. Metal particles in lube il filter.

we know from the first sentence that there is a fluid. We
would like to identify it with the lube cil mentioned in the
second sentence. In interpreting the second sentence, we
must prove the expression

(3 2)lude-0il(z)
If we had as an axiom
(Vz)flurd(z) D lude-oil(z)

then we could establish the ideatity. But of course we
don't have such an axiom, for it isn't true. There are lots
of other kinds of fluids. There would seem to be no way
to use superset information in our scheme.

Fortunately, however, there ic a way. We can make use
of this information by converting the axiom into a bicon-
ditional. In general, axjoms of the form

species D genus
can be converted into a biconditional axiom of the form

geaus A differentise E species

77To prime this intuition, imagine two doors. Behind one is a car.
Behind the other 12 something with o top. You pick a door. If there's
a convertible behind it, you get to koep it. Which dooe would you

niab?
=4
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Often, of course, as in the above example, we will not
be able to prove the differentiae, and in many cases the
differentiae can not even be spelled out. But in our ab-
ductive scheme, this does not matter. They can simply be
assumed. In fact, we need not state them explicitly. We
can simply introduce a predicate which stands for all the
remaning properties. It will never be provable, but it will
be assumable. Thus, we can rewrite (5) as

(Vz)fluid(z) A etey(z) E lube-oil(z)

Then the fact that something is fluid can be used as evi-
dence for its being lube oil. With the weights distributed
according to semantic contribution, we can go to extremes
and use an exiom like

(Yz)memmal(z)? A etcy(z)® O elephant(z)

to allow us to use the fact that something is & mammal as
(weak) evidence that it is an elephant.

In principle, one should try to prove the entire logical
form of the sentence and the constraints at once. In this
global strategy, any heuristic ordering of the individual
problems is done by the theorem prover. From a practi-
cal point of view, however, the global strategy generally
takes longer, sometimes significantly so, since it presents
the theorem-prover with a longer expression to be proved.
We have experimented both with this strategy and with
a bottom-up strategy in which, for example, we try to
identify the lube oil before trying to identify the lube oil
alarm. The latter is quicker since it presents the theorem-
prover with problems in a piecemeal fashion, but the for-
mer frequently results in better interpretations since it is
better able to exploit redundancies. The analysis of the
sentence in Section 4.2 below, for example, requires either
the global strategy or very careful axiomatization. The
bottom-up strategy, with only a view of a small local re-
gion of the sentence, cannot recognize and capitalize on
redundancies among distant elements in the sentence. Ide-
ally, we would like to have detailed control over the proof
process to allow a number of different factors to interact in
determining the allocation of deductive resources. Among
such factors would be word order, lexical form, syntactic
structure, topic-comment structure, and, in speech, pitch
accent.®

4 Examples

4.1 Distinguishing the Given and New

We will examine two difficult definite reference probiemsin
which the given and the new information are intertwined
and must be separated. In the first, new and old informa-.
tion about the same entity are encoded in a single noun
phrase.

$Pereirs and Pollack’s CANDIDE system (1988) is specifically de-
signed to aid investigation of the quastion of the most effective order
of intarpretatioa.




There was adequate lube oil.

‘We know about the lube oil already, and there is a corre-
sponding axiom in the knowledge base.

lube-0il(0)

Its adequacy is new information, bowever. Ii is what the
sentence is telling us.
The logical form of the sentence is, roughly,

(3 o)lude-0il(0) A adequate(o)

This is the expression that must be derived. The proof of
the existence of the lube oil is immediate. It is thus old
information. The adequacy can't be proved, and is hence
assumed as new information.

The second example is from Clark (1975), and illustrates
what happens when the given and new information are
combined into a single lexical item.

John walked into the room.
The chandelier shone brightly.

What chandelier is being referred to?
Let us suppose we have in our knowledge base the fact
that rooms have lights.

(6) (Vr)room(r) D (3)light(l) A in(l,r)

Suppose we also have the fact that lights with numerous
fixtures are chandeliers.

(7) (V)light(l) A has-fiztures(l) O chandelier(l)

The first sentence has given us the existence of a room—
room(R). To solve the definite reference problem in the
second sentence, we must prove the existence of a chande-
lier. Back-chaining on axiom (7), we see we need to prove
the existence of a light with fixtures. Back-chaining from
light(l) in axiom (6), we see we need to prove the exis-
tence of a room. We bave this in room(R). To complete
the derivation, we assume the light ! bas fixtures. The
light is thus given by the room mentioned in the previous
sentence, while the fact that it has fixtures is new infor-
mation.

4.2 Exploiting Redundancy

We next show the use of the abduction scheme in solving
internal coreference problems. Two problems raised by the
sentence

The plain was reduced by erosion to its present
level.

ae delerminug whal was ervding and determining what
“jt” refers to. Suppose our knowledge base consists of the
following axioms:

(Vp,l,8)decrease(p, 1, 8) A vertical(s)
Aetes(p,l,5) = (3e;)reduce’(ey,p.!)

or ¢, is a reduction of p to ! if and only if p decreases to |
on some vertical scale s (plus some other conditions).

(Yp)landform(p) A flat(p) A etcu(p) = plain(p)

or p is a plain if and only if p is a flat lar.dform (plus some
other conditions).

(Ve,y,1,8)at'(e,y,1) A on(l,8) A vertical(s)
A flat(y) A eteg(e,y,1,8) & level'(e,l,y)

or e is the condition of I's being the level] of y if and only
if e is the condition of y's being at [ on some vertical scale
s and y is flat (plus some other conditions).

(Vz,l,s)decrease(z, l,8) A landform(z)
A altitude(s) A eteg(y, !, 8} = (3e)erode’(e, x)

or ¢ is an eroding of z if and only if z is a Jandform that
decreases to some point / on the altitude scale s (plus some
other conditions).

(Vs)vertical(s) A etcr(p) E altitude(s)

or s is the altitude scale if and only if s is vertical (plus
some other conditions).
Now the analysis. The logical form of the sentence is

roughly

(a €1, P l’ Zy €34 y)eruu'(el WP I) A Pla"‘(P)
Aerode'(e;,z) A present(e;) A level'(es,l,y)

Our characterization of interpretation says that we must
derive this expression from the axioms or from assump-
tions. Back-chaining on reduce’(e,,p,[) yields

decrease(r, l,8,) A vertical(s;) A etes(p,l,s1)
Back-chaining on erode’(e;, z) yields

decrease(z, l3,83) A landform(z) A altitude(s;)
Aeteg(z,13,33)

and back-chaining on altitude(s;) in turn yields
vertical(sz) A etcy(s;)

We unify the goals decrease(p, I, s,) and decrease(z, 1z, 33).
and thereby identify the object of the erosion with the
plain. The goals vertical(s,) and veriical(s;) also unify.
telling us the reduction was on the altitude scale. Back-
chaining on plain(p) yields

landform(p) A flat(p) A eteu(p)
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identification of the object of the erosion with the plain.
Back-chaining on level'(e;,1, y) vields




at'(es.y,1) A on(l,s3) A vertical(sy) A flat(y)
Acetes(p)

and vertical(ss) and vertical(s;) unify, as do flat(y) and
flat(p), thereby idsntifying “it™, or y, as the plain p. We
have not written out the axioms for this, but note also that
“present” implies the existence of a change of level, or a
change in the location of “it" on a vertical scale, and a
decrease of a plain is a change of the plain's location on a
vertical scale. Unifying these would provide reinforcement
for our identification of “it" with the plain. Now assum-
ing the most specific atoms we have derived including all
the “et cetera” conditions, we arrive at an interpretation
that is minimal and that solves the internal coreference
problems as a byproduct.

4.3 A Thorough Integration of Syntax,
Semantics, and Pragmatics

By combining the idea of interpretation as abduction with
the older idea of parsing as deduction (Kowalski, 1980, pp.
52-53; Pereira and Warren, 1983), it becomes possible to
integrate syntax, semantics, and pragmatics in a very thor-
ough and elegant way.® Below is a simple grammar written
in Prolog style, but incorporating calls to local pragmatics.
The syntax portion is represented in standard Prolog man-
ner, with nonterminals treated as predicates and having as
two of its arguments the beginning and end points of the
phrase spanned by the nonterminal. The one modification
we would have to make to the abduction scheme is to allow
conjuncts in the antecedents to take costs directly as well
as weights. Constraints on the application of phrase struc-
ture rules have been omitted, but could be incorporated in
the usual way.

(Vi,j, k,z,p,args, reg, e,c,rel)np(i, j, )
Avp(j, k,p,args,reg) A p'(e,c)® A rel(c, z)%%°
A subst(req, cons(c,args))%® O s(i, k,¢)
(Vi,j k,e,p,args,reg, e, c,rel)s(s, j, ¢)
App(j, k,p,args,req) Ap'(ey,c)® Arel(c,e)t?®
A subst(reg, cons(c,args))¥® O s(i, k,e&e;)
(Vi 5, k,w,z,¢,rel)u(i, j,w) A np(j, k, 1)
Arel(c,z)¥
D vp{i, k, Az{w(z, )], <e>, Reg(w))
(Vi,4,k,z)det(i, 5,“the”) A en(j, k,z,p)
Ap(z)"° O np(i, k,1)

(Vi,j’k':)dCt(i‘j|“‘”) A m(j'k’z'p) A ﬂz).’
D np(i, k,z)

(Vi j, k,w,2,y, p,nn)n(i, j,w) A en(j,k,z,p)
Aw(y)*® A nn(y, 2 D en(i,k,z,p)

(Vi,5,k,2,p1, P2, 0798, reg, c,rel)en(i, j, 2, ;)
App(j, k,p1,args, req)

$This 1dea is due to Stuart Shieber.
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A subst(req, cons(c,args))® A rellc, z)5%
D en(i k2. Az{pi(z) A pa(2)))
(Vi,jywin(i, j,w) D (3zlen(i, j,z.w)
(Y4, j, &, w,2,¢c,rel)prep(i, j,w) A np(j.k,z)
Arel(c,z)%%°
D pp(i, k, Az[w(e, 2)}, <c>, Reg(w))

For example, the first axiom says that there is a sentence
from point { to point k asserting eventuality e if there
is & noun phrase from i to j referring to z and a verb
phrase from j to k denoting predicate p with arguments
args and having an ussociated requirement reg, and there
is (or, for $3, can be assumed to be) an eventuality e of
p's being true of ¢, where ¢ is related to or coercible from
r (with an assumability cost of $20), and the requirement
reg associated with p can be proved or, for $10, assumed to
hold of the arguments of p. The symbol efze; denotes the
conjunction of eventualities ¢ and ¢; (See Hobbs (1985b),
p. 35.) The third argiunent of predicates corresponding to
terminal nodes such as n and det is the word itself, which
then becomes the name of the predicate. The function
Reg returns the requirements associated with a predicate,
and subst takes care of substituting the right arguments
into the requirements. <c> is the list consisting of *he
single element ¢, and cons is the LISP function cons. . -
relations rel and nn are treated here as predicate variables.
but they could be treated as predicate constants, in which
case we would not have quantified over them.

In this approach, 3(0, n,e) can be read as saying there is
an interpretable sentence from point 0 to point n (asserting
e). Syatax is captured in predicates like np, vp, and s.
Compositional semantics is encoded in, for example, the
way the predicate p' is applied to its arguments in the first
axiom, and in the lambda expression in the third argument
of vp in the third axiom. Local pragmatics is captured by
virtue of the fact that in order to prove s(0, n, ¢), one must
derive the logical form of the sentence together with the
constraints predicates impose on their arguments, allowing
for metonymy.

Implementations of different orders of interpretation,
or different sorts of interaction among syntax. composi-
tional semantics, and local pragmatics, can then be seen
as different orders of search for a proof of s(0,n.e). In
a syntax-first order of interpretation, one would try first
to prove all the “syntactic” atoms, such as np(1,j.z).
before any of the “local pragmatic” atoms, such as
p'(e,¢). Verb-driven interpretation would first try to prove
vp(J. k,p,args, req) by proving v(i, j, w) and then using the
information in the requirements associated with the verb
to drive the search for the arguments of the verb, by de-
riving subst(req, cons(c,args)) before trying to prove the
various np atoms. But more fluid orders of interpreta.
tion are obviously possible. This formulation allows one

to prove thoas thines 8rst which sre sssiest ¢o prove. It is

also easy to see how processing could occur in parallel.

T

apig

2,

COENCT 11




It is moreover possible to deal with ill-formed or uncleas
input in this framework, by having axioms such as this
revision of our first axiom above.

(Vi, 4.k, 2,p,args, reg, e, c,relinp(i, j, )4
Arel(c,z)'® A subst(reg, cons(c,args))}®
D a(i, k,e)

This says that a verb phrase provides more evidence for
a sentence than & noun phrase does, but ¢ither one can
constitute s sentence if the string of words is otherwise
interpretable.

It is likely that this approach could be extended to
speech recognition by using Prolog-style rules to decom-
pose morphemes into their phonemes and weighting them
according to their acoustic prominence.

5 Controlling Abduction:
Hierarchy

Type

The first example on which we tested the new abductive
scheme wns the sentence

‘Lhere was adequate lube oil.

The system got the correct interpretation, that the lube oil
was the lube oil in the lube oil system of the air compressor,
and it assumed that that lube cil was adequate. But it
also got another interpretation. There is a mention in the
knowledge base of the adequacy of the lube oil pressure, so
it identified that adequacy with the adequacy mentioned
in the sentence. It then assumed that the pressure was
lube oil.

It is clear what went wrong here. Pressure is a magni-
tude whereas Jube oil is a material, and magnitudes can't
be materials. In principle, abduction requires s check for
the consistency of what is assumed, and our knowledge
base should have contained axioms from which it could be
inferred that a magnitude is not a material. In practice,
unconstrained consistency checking is undecidable and, at
best, may take a long time. Nevertheless, one can, through
the use of a type hierarchy, eliminate a very large number
of possible assumptions that are likely to result in an in-
consistency. We have consequently implemented a module
which specifies the types that various predicate-argument
positions can take on, and the likely disjointness relations
among types. This is a way of exploiting the specificity
of the English lexicon for computational purposes. This
addition led to a speed-up of two orders of magnitude.

There is a problem, however. In an ontologically promis-
cuous notation, there is no commitment in a primed propo-
sition to truth or existence in the real world. Thus, lube-
sile, o) does mot 5oy shat o is lube of or even that it
exists; rather it says that e is the eventuality of o's being
lube oil. This eventuality may or may not exist in the real
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world. If it does, then we would express this as Rexists(e).
and from that we could detive from axioms the existence
of o and the fact that it is lube oil. But e¢'s existential
status could be something different. For example, e could
be ponexistent, expressed as not(e) in the notation, and
in English as “The eventuality ¢ of o's being lube oil does
not exist,” or as “o is not lube 0il.” Or e may exist only
in someone's beliefs. While the axiom

(Vz)pressure(z) D =lube-oil(z)
is certainly true, the axiom

(Ve,,x)pressure’(e),2) D ~(3e3)lube-oil'(e;, z)
would not be true, The fact that a variable occupies the
second argument position of the predicate lube-oil’ does
not mean it is lube oil. We cannot properly restrict that
argument position to be lube oil, or fluid, or even a ma-
terial, for that would rule out perfectly true sentences like
“Truth is not lube oil.”

Generally, when one uses a type hierarchy, one assumes
the types to be disjoint sets with cleanly defined bound-
acies, and one assumes that predicates take arguments of
only certain tvpes. There are a lot of problems with this
idea. In any case, in our work, we are not buying into this
notion that the universs is typed. Rather we are using the
type hierarchy strictly as a heuristic, as a set of guesses
not about what could or could not be but about what it
would or would not occur to someone to ssy. When two
types are declared to be disjoint, we are saying that they
are certainly disjoint in the real world, and that they are
very probably disjoint everywhere except in certain bizarre
modal contexts. This means, however, that we risk failing
on certain rare examples. We could not, for example, deal
with the sentence, “It then assumed that the pressure was
lube oil.”

6 Future Directions

Deduction is explosive, and since the abduction scheme
augments decuction with the assumptions, it is even more
explosive. We are currently engaged in an empirical in-
vestigation of the behavior of this abductive scheme on a
very large knowledge base performing sophisticated pro-
cessing. In addition to type checling, we have introduced
two other techniques that are necessary for controlling the
explosion—unwinding recursive axioms and making use of
syntactic noncoreference information. We expect our in-
vestigation to continue to yield techniques for controlling
the abduction process.

We are also looking toward extending the interpretation
processes to cover lexical ambiguity, quantifier scope am-
biguity and metaphor interpretation problems as well. We
will also be investigating the integration proposed in Sec-
tioh 4.3 and an spproach ihat integrates all of this with
the recognition of discourse structure and the recognition
of relations between utterances and the hearer’s interests.
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Interpretation as Abduction

Jerry R. Hobbs, Mark Stickel,
Douglas Appelt, and Paul Martin

Artificial Intelligence Center
SRI International

Abstract

Abduction is inference to the best explanation. In the TACITUS project at SRI we
have developed an approach to abductive inference, called “weighted abduction”, that
has resulted in a significant simplification of how the problem of interpreting texts
is conceptualized. The interpretation of a text is the minimal explanation of why
the text would be true. More precisely, to interpret a text, one must prove the logical
form of the text from what is already mutually known, allowing for coercions, merging
redundancies where possible, and making assumptions where necessary. It is shown
how such “local pragmatics” problems as reference resolution, the interpretation of
compound nominals, the resolution of syntactic ambiguity and metonymy, and schema
recognition can be solved in this manner. Moreover, this approach of “interpretation
as abduction” can be combined with the older view of “parsing as deduction” to
produce an elegant and thorough integration of syntax, semantics, and pragmatics, one
that spans the range of linguistic phenomena from phonology to discourse structure
and accommodates both interpretation and generation. Finally, we discuss means
for making the abduction process efficient, possibilities for extending the approach
to other pragmatics phenomena, and the semantics of the weights and costs in the
abduction scheme.

1 Introduction

Abductive inference is inference to the best explanation. The process of interpreting
sentences in discourse can be viewed as the process of providing the best explanation of why
the sentences would be true. In the TACITUS Project at SRI, we have developed a scheme
for abductive inference that yields a significant simplification in the description of such
interpretation processes and a significant extension of the range of phenomena that can
be captured. It has been implemented in the TACITUS System (Hobbs, 1986; Hobbs and
Martin, 1987) and has been or is being used to solve a variety of interpretation problems
in several kinds of messages, including equipment failure reports, naval operations reports,
and terrorist reports.

It is a commonplace that people understand discourse so well because they know
so much. Accordingly, the aim of the TACITUS Project has been to investigate how
knowledge is used in the interpretation of discourse. This has involved building a large




knowledge base of commonsense and domain knowledge (see Hobbs et al., 1987), and
developing procedures for using this knowledge for the interpretation of discourse. In the
latter effort, we have concentrated on problems in “local pragmatics”, specifically, the
problems of reference resolution, the interpretation of compound nominals, the resolution
of some kinds of syntactic ambiguity, and metonymy resolution. Our approach to these
problems is the focus of the first part of this paper.

In the framework we have developed, what the interpretation of a sentence is can be
described very concisely:

To interpret a sentence:

(1) Prove the logical form of the sentence,

together with the constraints that predicates impose on their arguments,
allowing for coercions,

Merging redundancies where possible,

Making assumptions where necessary.

By the first line we mean “prove, or derive in the logical sense, from the predicate calcu-
lus axioms in the knowledge base, the logical form that has been produced by syntactic
analysis and semantic translation of the sentence.”

In a discourse situation, the speaker and hearer both have their sets of private beliefs,
and there is a large overlapping set of mutual beliefs. An utterance stands with one foot in
mutual belief and one foot in the speaker’s private beliefs. It is a bid to extend the area of
mutual belief to include some private beliefs of the speaker’s.! It is anchored referentially
in mutual belief, and when we succeed in proving the logical form and the constraints,
we are recognizing this referential anchor. This is the given information, the definite, the
presupposed. Where it is necessary to make assumptions, the information comes from the
speaker’s private beliefs, and hence is the new information, the indefinite, the asserted.
Merging redundancies is a way of getting a minimal, and hence a best, interpretation.?

Consider a simple example.

(2) The Boston office called.

This sentence poses at least three local pragmatics problems, the problems of resolving the
reference of “the Boston office”, expanding the metonymy to “{Some person at] the Boston

YThis is clearest in the case of assertions. But questions and commands can also be conceived of as
primarily conveying information—about the speaker’s wishes. In any case, most of what is required to
interpret the three sentences,

John called the-Boston office.
Did John call the Boston office?
Jolin, call the Boston office.
is the same,
ZInterpreting indirect speech acts, such as “It’s cold in here,” meaning “Close the window,” is not a
counterexample to the principle that the minimal interpretation is the best interpretation, but rather can

be seen as a matter of achieving the minimal interpretation coherent with the interests of the speaker.
More on this in Section 8.2.
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office called”, and determining the implicit relation hetween Boston and the office. Let us
put these problems aside for the moment, however, and interpret the sentence according to
characterization (1). we must prove abductively the logical form of the sentence together
with the constraint “call” imposes on its agent, allowing for a coercion. That is, we must
prove abductively the expression (ignoring tense and some other complexities)

(3) (3=,9,7e)call'(e,x) A person(z) A rel(z,y) A office(y) A Boston(z)
Ann(z,y)

That is, there is a calling event e by & where z is a person. z may or may not be the same
as the explicit subject of the sentence, but it is at least related to it, or coercible from
it, represented by rel(2,y). y is an office and it bears some unspecified relation nn to z
which is Boston. person(z) is the requirement that call’ imposes on its agent .

The sentence can be interpreted with respect to a knowledge base that contains the
following facts:

Boston(B,)

that is, By is the city of Boston.
office(01) A in(01, By)

that is, O, is an office and is in Boston.
person(Jy)

that is, John J is a person.
work- for(J1,01)

that is, John J; works for the office O;.
(Vy,2)in(y,z) D nn(z,y)

that is, if y is in 2, then 2 and y are in a possible compound nominal relation.
(Vz,y)work-for(z,y) D rel(z,y)

that is, if « works for y, then y can be coerced into z.

The proof of all of (3) is straightforward except for the conjunct call’(z). Hence, we
assume that; it is the new information conveyed by the sentence.

Now notice that the three local pragmatics problems have been solved as a by-product.
We have resolved “the Boston office” to O;. We have determined the implicit relation in
the compound nominal to be in. And we have expanded the metonymy to “John, who
works for the Boston office, called.”

In Section 2 of this paper, we give a high-level overview of the TACITUS system, in
which this method of interpretation is implemented. In Section 3, we justify the first
clause of the above characterization by showing in a more detailed fashion that solving
local pragmatics problems is equivalent to proving the logical form plus the constraints. In
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Section 4, we justify the last two clauses by describing our scheme of abductive inference.
In Section 5-we present several examples. In Section 6 we show how the idea of interpre-
tation as abduction can be combined with the older idea of parsing as deduction to yield
a thorough and elegant integration of syntax, semantics, and pragmatics, that works for
both interpretation and generation. In Section 7 we discuss related work. In Section 8 we
discuss three kinds of future directions, improving the efficiency, extending the coverage,
and devising a principled semantics for the abduction scheme.

2 The TACITUS System

TACITUS stands for The Abductive Commonsense Inference Text Understanding System.
It is intended for processing messages and other texts for a variety of purposes, including
message routing and prioritizing, problem monitoring, and database entry and diagnosis
on the basis of the information in the texts. It has been used for three applications so far:

1. Equipment failure reports or casualty reports (casreps). These are short, telegraphic
messages about breakdowns in machinery. The application is to perform a diagnosis
on the basis of the information in the message.

2. Naval operation reports (opreps). These are telegraphic messages about ships at-
tacking other ships, of from one to ten sentences, each of from one to thirty words,
generated in the midst of naval exercises. There are frequent misspellings and uses
of jargon, and there are more sentence fragments than grammatical sentences. The
application is to produce database entries saying who did what to whom, with what
instrument, when, where, and with what result.

3. Newspaper articles and similar texts on terrorist activities. The application is again
to produce database entries.

To give the reader a concrete sense of these applications, we give an example of the
input and output of the system for a relatively simple text. -One sentence from the terrorist
reports is

Bombs exploded at the offices of French-owned firms in Catalonia, causing
serious damage.

The corresponding database entries are

Incident Type: Bombing
Incident Country: Spain
Responsible Organization: —

Target Nationality: France
Target Type: Commercial
Property Damage: Some Damage

There is an incident of type Bombing. The incident country is Spain, since Catalonia is a
part of Spain. There is no information about what organization is responsible. The target
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type is Commercial, since it was firms that were attacked, and the target nationality was
France, since the firms are owned by the French. Finally, there is some level of property
damage.

The naval operation reports is the application that has been developed most exten-
sively. The system has been evaluated on a corpus-of raval operation reports. Recall is
defined as the number of correct items the system enters into the database, divided by the
total number of items it should have entered. The recall for TACITUS on the full set of
130 opreps was 47%. Error rate is the percent of incorrect database entries proposed by
the system. The error rate was 8%. There is very little that is general that one could say
about the nature of the misses and errors. We specifically targeted 20 of the messages and
tried to eliminate the bugs that those messages revealed, without attempting to extend
the power of the system in any significant way. After we did this, the recall for the 20
messages was 72% and the error rate was 5%. It was our estimate that with several more
months of work on the system we could raise the recall for the full corpus to above 80%,
keeping the error rate at 5% or below. At that point we would encounter some of the
hard problems, where equipping the system with the necessary knowledge would threaten
its efficiency, or where phenomena not currently handled, such as semantic parallelism
between sentences, would have to be dealt with.

The system, as it is presently constructed, consists of three components: the syntactic
analysis and semantic translation component, the pragmatics component, and the task
component. How the pragmatics component works is the topic of Sections 3, 4, and 8.1.
Here we describe the other two tomponents very briefly.

The syntactic analysis and semantic tranclation is done by the DIALOGIC system.
DIALOGIC includes a large grammar of English that was constructed in 1980 and 1981
essentially by merging the DIAGRAM grammar of Robinson (1982) with the Linguistic
String Project grammar of Sager (1981), including semantic translators for all the rules. It
has since undergone further development. Its coverage encompasses all of the major syn-
tactic structures of English, including sentential complements, adverbials, relative clauses,
and the most common conjunction constructions. Selectional constraints can be encoded
and applied in either a hard mode that rejects parses or in a soft mode that orders parses.
A list of possible intra- and inter-sentential antecedents for pronouns is produced, ordered
by syntactic criteria. There are a number of heuristics for ordering parses on the basis
of syntactic criteria (Hobbs and Bear, 1990). Optionally, the system can produce neu-
tral representations for the most common cases of structural ambiguity (Bear and Hobbs,
1988). DIALOGIC produces a logical form for the sentence in an ontologically promis-
cuous version of first-order predicate calculus (Hobbs, 1985a), encoding everything that
can be determined by purely syntactic means, without recourse to the context or to world
knowledge.

This initial logical form is passed to the pragmatics.component, which works as de-
scribed below, to produce an elaborated logical form, making explicit the inferences and
assumptions required for interpreting the text and the coreference relations that are dis-
covered in interpretation.

On the basis of the information in the elaborated logical form, the task component
produces the required output, for example, the diagnosis or the database entries. The




task component is generally fairly small because all of the relevant information has been
made explicit by the pragmatics component. The task component is programmed in a
schema-specification language that is a slight extension of first-order predicate calculus
(Tyson and Hobbs, 1990). _

TACITUS is intended to be largely domain- and application-independent. The lexicon
used by DIALOGIC and the knowledge base used by the pragmatics component must of
course vary from domain to domain, but the grammar itself and the pragmatics procedure
do not vary from one domain to the next. The task component varies from application to
application, but the use of the schema-specification language makes even this component
largely domain-independent.

This modular organization of the system into syntax, pragmatics, and task is undercut
in Section 5. There we propose a unified framework that incorporates all three mod-
ules. The framework has been implemented, however, only in a preliminary experimental
manner.

3 Local Pragmatics

The four local pragmatics problems we have concentrated on so far can be illustrated by
the following “sentence” from an equipment failure report:

(4) Disengaged compressor after lube-oil alarm.

Identifying the compressor und the alarm are reference resolution problems. Determin-
ing the implicit relation between “lube-oil” and “alarm” is the problem of compound
nominal interpretation. Deciding whether “after lube-oil alarm” modifies the compres-
sor or the disengaging is a problem in syntactic ambiguity resolution. The preposition
“after” requires an event or condition as its object and this forces us to coerce “lube-oil
alarm” into “the sounding of the lube-oil alarm”; this is an example of metonymy res-
olution. We wish to show that solving the first three of these problems amounts to
deriving the logical form of the sentence. Solving the fourth amounts to deriving the con-
straints predicates impose on their arguments, allowing for coercions. Thus, to solve all of
them is to interpret them according to characterization (1). For each of these problems,
our approach is to frame a logical expression whose derivation, or proof, constitutes an
interpretation.

Reference: To resolve the reference of “compressor” in sentence (4), we need to prove
(constructively) the following logical expression:

(8) (3c)compressor(c)

If, for example, we prove this expression by using axioms that say C, is a “starting air
compressor”,® and that a starting air compressor is a compressor, then we have resolved
the reference of “compressor” to-Cj.

In general, we would expect definite noun phrases to refer to entities the hearer already

knows about and can identify, and indefinite noun phrases to refer to new entities the

3That is, a compressor for the air used to start the ship’s gas turbine engines.




speaker is introducing. However, in the casualty reports most noun phrases have no
determiners. There are sentences, such as

Retained oil sample and filter for future analysis.

where “sample” is indefinite, or new information, and “filter” is definite, or already known
to the hearer. In this case, we try to prove the existence of both the sample and the filter.
When we fail to prove the existence of the sample, we know that it is new, and we simply
assume its existence.

Elements in a sentence other than nominals can also function referentially. In

Alarm sounded.
Alarm activated during routine start of compressor.

one can argue that the activation is the same as, or at least implicit in, the sounding,.
Hence, in addition to trying to derive expressions such as (5) for nominal reference, for
possible non-nominal reference we try to prove similar expressions.

(3...60,...)... A activate'(e,a) A ...2

That is, we wish to derive the existence, from background knowledge or the previous text,
of some known or implied activation. Most, but certainly not all, information conveyed
non-nominally is new, and hence will be assumed by means described in. Section 4.

Compound Nominals: 1o .esolve the reference of the noun phrase “lube-oil alarm”,
we need to find two entities 0 ana a with the appropriate properties. The entity o must
be lube oil, « must be an alarm, and there must be some implicit relation between them.
If we call that implicit relation nn, then the expression that must be proved is

(30, a,nn)lube-0il(0) A alarm(a) A nn(o,a)

In the proof, instantiating nn amounts to interpreting the implicit relation between the
two nouns in the compound nominal. Compound nominal interpretation is thus just a
special case of reference resolution.

Treating nn as a predicate variable in this way assumes that the relation between the
two nouns can be anything, and there are good reasons for believing this to be the case
(e.g., Downing, 1977). In “lube-oil alarm”, for example, the relation is

Az,y [y sounds when the pressure of z drops too low]

However, in our implementation we use a first-order simulation of this approach. The
symbol nn is treated as a predicate constant, and the most common possible relations (see
Levi, 1978) are encoded in axioms. The axiom

(Ya,y)pert(y,z) D nn(z,y)

Read this as “e is the activation of a.” This is an example of a notational convention used throughout
this article. Very briefly, where p(z) says that p is true of z, p’(e,z) says that e is the eventuality or
possible situation of p being true of z. The unprimed and primed predicates are .elated by the axiom
schema (Vz)p(z) = (3e)p’(e,z) A Rexists(e) where Rezists(e) says that the eventuality e does in fact
really exist. See Hobbs (1985a) for further explanation of this notation for events.




allows interpretation of compound nominals of the form “<whole> <part>”, such as
“filter element”. Axioms of the form

(Y, y)sample(y,z) > nn(z,y)

handle the very common case in which the head noun is a relational noun and the prenom-
inal noun fills one of its roles, as in “oil sample”. Complex relations such as the one in
“lube-oil alarm” can sometimes be glossed as “for”.

(Vz,y)for(y,z) D nn(z,y)

Syntactic Ambiguity: Some of the most common types of syntactic ambiguity, in-
cluding prepositional phrase and other attachment ambiguities and very compound nom-
inal ambiguities®, can be converted into constrained coreference problems (see Bear and
Hobbs, 1988). For example, in (4) the first argument of after is taken to be an existentially
quantified variable which is equal to either the compressor or the disengaging event. The
logical form would thus include

3...e¢,9,a,...)... Aafter(y,a) A y € {c,e} A ...

That is, no matter how after(y,a) is proved or assumed, y must be equal to either the
compressor c or the disengaging e. This kind of ambiguity is often solved as a by-product
of the resolution of metonymy or of the merging of redundancies.

Metonymy: Predicates impose constraints on their arguments that are often violated.
When they are violated, the arguments must be coerced into something related that sat-
isfies the constraints. This is the process of metonymy resolution.® Let us suppose, for
example, that in sentence (4), the predicate after requires its arguments to be events:

after(ey,ez) : event(e;) A event(ez)

To allow for coercions, the logical form of the sentence is altered by replacing the explicit
arguments by “coercion variables” which satisfy the constraints and which are related
somehow to the explicit arguments. Thus the altered logical form for (4) would include

(3 ...k, ko, y,a,rely,relay. . ). .. Aafter(ky, ko) A event(ky) A rely(k1,y)
A event(ka) A rely(ke,a) A ... '

Here, k1 and k; are the coercion variables, and the after relation obtains between them,
rather than between y and a. k; and k2 are both events, and k; and k, are coercible from
y and @, respectively.

As in the most general approach to compound nominal interpretation, this treatment
is second-order, and suggests- that any relation at all can hold between the implicit and
cxplicit arguments. Nunberg (1978), among others, has in fact argued just this point.

5A very compound nominal is a string of two or more nouns preceding a head noun, as in “Stanford
Research Institute”. The ambiguity they pose is whether the first noun is taken to modify the second or
the third.

6There are other interpretive moves in this situation besides metonymic interpretation, such as
metaphoric interpretation. For the present article, we will confine ourselves to metonymy, however.
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However, in our implementation, we are using a first-order simulation. The predicate
constant rel is treated as a predicate constant, and there are a number of axioms that
specify what the possible coercions are. Identity is one possible relation, since the explicit
arguments could in fact satisfy the constraints:

(Va)rel(z,2)

In general, where this works, it will lead to the best interpretation. We can also coerce
from a whole to a part and from an-object to its function. Hence,

Yz, y)part(z,y) D rel(z,y)
(Vz,e)function(e,z) D rel(e,z)

Putting it all together, we find that to solve all the local pragmatics problems posed
by sentence (4), we must derive the following expression:

(3e,z, ¢, k1, ko, y,a,0)Past(e) A disenguge’(e,z,c) A compressor(c)
A after(ky, ky) A event(ky) A rel(ky,y) A y € {c,e}
Aevent(kq) A rel(k,a) A alarm(e) A nn(o,a) A lube-oil(o)

But this is just the logical form of the senience” together with the constraints that predi-
cates impose on their arguments, allowing for coercions. That is, it is the first half of our
characterization (1) of what it is to interpret a sentence.

When parts of this expression canno ™e derived, assumptions must be made, and these
assumptions are taken to be the new information. The likelihood that different conjuncts
in this expression will be new information varies according to how the information is
presented, linguistically. The main verb is more likely to convey new information than a
definite noun phrase. Thus, we assign a cost to each of the conjuncts—the cost of assuming
that conjunct. This cost is expressed in the same currency in which other factors involved
in the “goodness” of an interpretation are expressed; among these factors are likely to
be the length of the proofs used and the salience of the axioms they rely on. Since a
definite noun phrase is generally used referentially, an interpretation that simply assumes
the existence of the referent and thus fails to identify it should be an expensive one. It
is therefore given a high assumability cost. For purposes of concreteness, let’s just call
this $10. Indefinite noun phrases are not usually used referentially, so they are given a
low cost, say, $1. Bare noun phrases are given an intermediate cost, say, $5. Propositions
presented non-nominally are usually new information, so they are given a low cost, say,
$3. One does not usually use selectional constraints to convey new information, so they
are given the same cost as definite noun phrases. Coercion relations and the compound
nominal relations are given a very high cost, say $20, since to assume them is to fail to
solve the interpretation problem. If we place the assumability costs as superscripts on
their conjuncts in the above logical form, we get the following expression:

"For justification for this kind of logical form for sentences with quantifiers and intensional operators,
see Hobbs(1983b, 1985a).




(Be,x,c,ky, ka,y,a,0)Past(e)®® A disengage!(e,x,c)™® A compressor(c)™®
A after{ky, k)3 A event(k1)¥10 A rel(ky,y)52° A y € {c,e} A event(lp) 10
Arel(ka, @) A alarm(a)¥® A nn(0,a)%%° A lube-oil(0)™®

While this example gives a rough idea of the relative assumability costs, the real costs
must mesh well with the inference processes and thus must be determined experimentally.
The use of numbers here and throughout the next section constitutes one possible regime
with the needed properties. This issue is addressed more fully in Section 8.3.

4 Weighted Abduction

In deduction, from (Vz)p(z) D ¢(z) and p(A), one concludes ¢(4). In induction, from
p(A) and ¢(A), or more likely, from a number of instances of p(A) and ¢(A), one concludes
(Va)p(z) D ¢(z). Abduction is the third possibility. From (Vz)p(z) D ¢(z) and ¢(4),
one concludes p(A). One can think of g(A) as the observable evidence, of (V2 )p(z) D ¢(2)
as a general principle that could explain ¢(A)’s occurrence, and of p(A) as the inferred,
underlying cause or explanation of g(A). Of course, this mode of inference is not valid;
there may be many possible such p(A)’s. Therefore, other criteria are needed to choose
among the possibilities.

One obvious criterion is the consistency of p(A) with the rest of what one knows. Two
other criteria are what Thagard (1978) has called simplicity and consilience. Roughly,
simplicity is that p(A) should be as small as possible, and consilience is that ¢(A) should
be as big as possible. We want to get more bang for the buck, where g(A) is bang, and
p(A) is buck.

There is a property of natural language discourse, noticed by a number of linguists
(e.g., Joos, 1972; Wilks, 1972), that suggests a role for simplicity and consilience in
interpretation—its high degree of redundancy. Consider

Inspection of oil filter revealed metal particles.

An inspection is a looking at that causes one to learn a property relevant to the function
of the inspected object. The function of a filter is to capture particles from a fluid. To
reveal is to cause one to learn. If we assume the two causings to learn are identical,
the two sets of particles are identical, and the two functions are identical, then we have
explained the sentence in a minimal fashion. Because we have exploited this redundancy, a
small number of inferences and assumptions (simplicity) have explained a large number of
syntactically independent propositions in the sentence (consilience). As a by-product, we
have moreover shown that the inspector is the one to whom the particles are revealed and
that the particles are in the filter, facts-which are not explicitly conveyed by the sentence.

Another issue that arises in abduction in choosing among potential explanations is
what might be called the “informativeness-correctness tradeoff”. Many previous uses of
abduction in AI from a theorem-proving perspective have been in diagnostic reasoning
(e.g., Pople, 1973; Cox and Pietrzykowski, 1986), and they have assumed “most-specific
abduction”. If we wish to explain chest pains, it is not sufficient to assume the cause is
simply chest pains. We want something more-specific, such as “pneumonia”. We want
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the most specific possible explanation. In natural language processing, however, we often
want the least specific assumption. If there is a mention of a fluid, we do not necessarily
want to assume it is lube oil. Assuming simply the existence of a fluid may be the best
we can do.’ However, if there is corroborating evidence, we may want to make a more
specific assumption. In

Alarm sounded. Flow obstructed.

we know the alarm is for the lube oil pressure, and this provides evidence that the flow
is not merely of a fluid but of lube oil. The more specific our assumptions are, the more
informative our interpretation is. The less specific they are, the more likely they are to be
correct.

We therefore need a scheme of abductive inference with three features. First, it should
be possible for goal expressions to be assumable, at varying costs. Second, there should be
the possibility of making assumptions at various levels of specificity. Third, there should
be a way of exploiting the natural redundancy of texts.

We have devised just such an abduction scheme.® First, every conjunct in the logical
form of the sentence is given an assumability cost, as described at the end of Section 3.
Second, this cost is passed back to the antecedents in Horn clauses by assigning weights
to them. Axioms are stated in the form

6) A" AR DQ

This says that P, and P, imply Q, but also that if the cost of assuming @ is ¢, then the
cost of assuming P; is wjc, and the cost of assuming P, is woc.l® Third, factoring or
synthesis is allowed. That is, goal expressions may be unified, in which case the resulting
expression is given the smaller of the costs of the input expressions. Thus, if the goal
expression is of the form

e Ag@) AN AgY) A

where ¢(z) costs $20 and ¢(y) costs $10, then factoring assumes z and y to be identical
and yields an expression of the form

o Ag@) AL

where g(z) costs $10. This feature leads to minimality through the exploitation of redun-
dancy.

Note that in (6), if wy + w2 < 1, most-specific abduction is favored—why assume
@ when it is cheaper to assume P; and P,. If wy + wy > 1, least-specific abduction is
favored—why assume P; and P, when it is cheaper to assume Q. But in

PSAPSDQ

8Sometimes a cigar is just a cigar.

9The abduction scheme is due to Mark Stickel, and it, or a variant of it, is described at greater length
in Stickel (1989).

198tickel (1989) generalizes this to arbitrary functions of c.
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if P, has already been derived, it is cheaper to assume P- than ). P, has provided evidence
for @, and assuming the “balance™ P, of the necessary evidence for @ should be cheaper.
Factoring can also override least-specific abduction. Suppose we have the axioms

Pl'e A 'P§6 D@
P8 A PP D Qo

and we wish to derive Q; A Q3, where each conjunct has an assumability cost of $10.
Assuming @3 A Q2 will then cost §20, whereas assuming P; A P, A P; will cost only
$18, since the two instances of P, can be unified. Thus, the abduction scheme allows us
to adopt the careful policy of favoring least-specific abduction while also allowing us to
exploit the redundancy of texts for more specific interpretations.

Finally, we should note that whenever an assumption is made, it first must be checked
for consistency. Problems associated with this requirement are discussed in Section 8.1.

In the above examples we have used equal weights on the conjuncts in the antecedents.
It is more reasonable, however, to assign the weights according to the “semantic contribu-
tion” each conjunct makes to the consequent. Consider, for example, the axiom

(Vz)car(z)® A no-top(z)? D convertible(z)

We have an intuitive sense that car contributes more to convertible than no-top does. We
are more likely to assume something is a convertible if we know that it is-a car than if
we know it has no top.!! The weights on the conjuncts in the antecedent are adjusted
accordingly.

In the abductive approach to interpretation, we determine what implies the logical
form of the sentence rather than determining what can be inferred from it. We backward-
chain rather than forward-chain. Thus, one would think that we could not use superset
information in processing the sentence. Since we are backward-chaining from the propo-
sitions in the logical form, the fact that, say, lube oil is a fluid, which would be expressed
as

(7) (Ya)lube-oil(z) O fluid(z)

could not play a role in the analysis of a sentence containing “lube oil”. This is inconve-
nient. In the text

Flow obstructed. Metal particles in lube oil filter.

we know from the fi1st sentence that there is a fluid. We would like to identify it with the
lube oil mentioned in the second sentence. In interpreting the second sentence, we must
prove the expression

(3z)lube-oil(z) ;

If we had as an axiom

UTo prime this intuition, imagine two doors. Behind one is a car. Behind the other is'something with
no top. You pick a door. If there’s a convertible behind it, you get to keep it. Which door would you pick?
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(Va)fluid(z) D lube-oil(x)

then we could establish the identity. But of course we don’t have such an axiom, for it
isn’t true. There are lots of other kinds of fluids. There would seem to be no way to use
superset information in our scheme.

Fortunately, however, there is a way. We can make use of this information by converting
the axiom to a biconditional. In general, axioms of the form

species D genus
can be converted into a biconditional axiom of the form
genus A differentiae = species

Often as in the above example, we will not be able to prove the differentiae, and in many
cases the differentiae cannot even be spelled out. But in our abductive scheme, this does
not matter; they can simply be assumed. In fact, we need not state them explicitly. We
can simply introduce a predicate which stands for all the remaining properties. It will
never be provable, but it will be assumable. Thus, we can rewrite (7) as

(V) fluid(z)® A etey(2)® = lube-oil(z)

Then the fact that something is fluid can be used as evidence for its being lube oil, ‘ace
we can assume-etcy(z). With the weights distributed according to semantic contribution,
we can go to extremes and use an axiom like

(Vz)mammal(z)? A etca(2)® D elephant(z)

to allow us to use the fact that something is 2 mammal as (weak) evidence for its being
an elephant.

The introduction of “et cetera” predications is a very powerful, and liberating, de-
vice. Before we hit upon this device, in our attempts at axiomatizing a domain in a way
that would accommodate many texts, we were always “arrow hacking”—trying to figure
out which way the implication had to go if we were to get the right interpretations, and
lamenting when that made no semantic sense. With “et cetera” predications, that prob-
lem went away, and for nrincipled reasons. Implicative relations could be used in either
direction. Moreover, their use is liberating when constructing axioms for a knowledge
base. It is well-known that almost no concept can be defined precisely. We are now able
to come as close to a definition as we can and introduce an “et cetera” predication with
an appropriate weight to indicate how far short we feel we have fallen. The “et cetera”
predications play a role analogous to the abnormality predications of circumscriptive logic
(McCarthy, 1987), a connection we explore a bit further in Section 8.3.

Exactly how the weights and costs should be assigned is a matter of continuing research.
Our experience so far suggests that which interpretation is chosen is sensitive to whether
the weights add up to more or less than one, but that otherwise the system’s performance
is fairly impervious to small changes in the values of the weights and costs. In Section
8.1, there some further discussion about the uses the numbers can be put to in making
the abduction procedure more efficient, and in Section 8.3, there is a discussion of the
semantics of the numbers.
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5 Examples

5.1 Distinguishing the Given and the New

Let us examine four successively more difficult definite reference problems in which the
given and the new information are intertwined and must be separated.1? The first is

Retained sample and filter element.

Here “sample” is new information. It was not known before this sentence in the message
that a sample was taken. The “filter element”, on the other hand, is given information.
It is already known that the compressor’s lube oil system has a filter, and that a filter has
a filter element as one of its parts. These facts are represented-in the knowledge base by
the axioms 1

filter(F)
(V f) filter(f) D (3 fe)filter-element(fe) A pari(fe, f)

Noun phrase conjunction is represented by the predicate andn. The expression andn(z, s, fe)
says that  is the typical element of the set consisting of the elements s and fe. Typi-
cal elements can be thought of as reified universally quantified variables. Roughly, their
properties are inherited by the elements of the set. (See Hobbs, 1983b.) An axiom of pairs
says that a set can be formed out of any two elements:

(Vs, fe)(3z)andn(z,s, fe)
3 The logical form for the sentence is, roughly,
(Je,y,x,5, fe)retain'(e,y, z) A andn(z, s, fe) A sample(s) A filter-element(fe)

That is, y retained z where z is the typical element of a set consisting of a sample s
and a filter element fe. Let us suppose we have no metonymy problems here. Then
interpretation is simply a matter of deriving this expression. We-can prove the existence
of the filter element from the existence of the filter F. We cannot prove the existence of
the sample s, so we assume it. It is thus new information. Given s and fe, the axiom
of pairs gives us the existence of z and the truth of andn(z,s, fe). We cannot prove the
existence of the retaining e, so we assume it; it is likewise new information.

The next example is a bit trickier, because new and old information about the same
entity are encoded in a single noun phrase.

There was adequate lube oil.

We know about the lube oil already, and there is a corresponding axiom in the knowledge
base.

PUT I VELRPUEA N

2In all the examples of Section 5, we will ignore weights and costs, show the path to the correct
interpretation, and assume the weights and costs are such that this interpretation will be chosen. A great
deal of theoretical and empirical research will be required before this will happen in fact, especially in a
system with a very large knowledge base.
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lube-0il(0)

Its adequacy is new information, however. It is what the sentence is telling us.
The logical form of the sentence is, roughly,

(3o)lube-oil(0) A adequate(o)

This is the expression that must be derived. The proof of the existence of the lube oil
is immediate. It is thus old information. The adequacy cannot be proved and is .hence
assumed as new information.
The next example is from Clark (1975), and illustrates what happens when the given
and new information are combined into a single lexical item:
John walked into the room.
The chandelier shone brightly.

What chandelier is being referred to?
Let us suppose we have in our knowledge base the fact that rooms have lights:
(8) (Vr)roem{r) D (3Dlight(l) A in(l,r)
Suppose we alsc have the fact that lighting fixtures with several branches are chandeliers:
(9) (YDlight(l) A has-branches(l) D chandelier(l)

The first sentence has given us the existence of a room—room(R). To solve the definite
reference problem in the second sentence, we must prove the existence of a chandelier.
Back-chaining on axiom (9), we see we need to prove the existence of a light with branches.
Back-chaining from l¢ght(!) in axiom (8), we see we need to prove the existence of a room.
We have this in room(R). To complete the derivation, we assume the light ! has branches.
The light is thus given by the room mentioned in the previous sentence, while the fact
that it has several branches is new information.

This example may seem to have an unnatural, pseudo-literary quality. There are
similar examples, however, which are completely natural. Consider

I saw my doctor last week.
He told me-to get more exercise.

Who does “he” in the second sentence refer to?

Suppose in our-knowledge base we have axioms encoding the fact that a doctor is a
person,

(10) (Vd)doctor(d) D person(d)
and the fact that a male person is-a “he”,
(11) (Vd)person(d) A male(d) D he(d)
To solve thereference problem, we must derive
(3d)he(d)

Back-chaining on axioms (11) and (10), matching with the doctor mentioned in the first
sentence, and assuming the new information male(d) gives us a derivation.?

13gexists will find this example more compelling if they substitute “she” for “he”.
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5.2 Exploiting Redundancy

We next show the use of the abduction scheme in solving internal coreference problems.
Two problems raised by the sentence

The plain was reduced by erosion to its present level.

are determining what was eroding and determining what “it” refers to. Suppose our
knowledge base consists of the following axioms:

(Vp,1,s)decrease(p,l,s) A vertical(s) A etes(p,l,s) = (3 e)reduce’(e,p, )

or ¢ is a reduction of p to ! if and only if p decreases to ! on some (real or metaphorical)
vertical scale s (plus some other conditions).

(Vp)landform(p) A flat(p) A etcs(p) = plain(p)
or p is a plain if and only if p is a flat landform (plus some other conditions),

(Ve,u,1,8)at'(e,y,1) A on(l,s) A vertical(s) A flat(y) A etes(e,y,l,s)
= level'(e,l,y)

or e is the condition of I’s being the level of y if and only if e is the condition of y’s being
at [ on some vertical scale s and y is flat (plus some other conditions).

(Ya,l,s)decrease(z,l,s) A landform(z) A altitude(s) A eteg(y,l,s)
= (Je)erode'(e,z)

or e is an eroding of z if and only if z is a landform that decreases to some point / on the
altitude scale s (plus some other conditions).

(Vs)vertical(s) A etcr(s) = altitude(s)

or s is the altitude scale if and only if s is vertical (plus some other condicions).
Now the analysis. The logical form of the sentence is roughly

(3e1,p,1,e2,2,€3,y)reduce’(eg,p,1) A plain(p) A erode'(ez,z) A present(ez)
Alevel'(es,l,y) )

Our characterization of interpretation says that we must derive this expression from the
axioms or from assumptions. Back-chaining on reduce(ey,p,!) yields \

decrease(p,l,s1) A vertical(s1) A etca(p,l, 1)
Back-chaining on erode’(ey,z) yields
decrease(z,la,82) A landform(z) A altitude(s?) A etes(z,ls, s2)

and back-chaining on altitude(s;) in turn yields

MThis and the subsequent axioms are written as biconditionals, but they would be used as implications
(from left to right), and- the weighting scheme would operate accordingly.
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vertical(sz) A etcr(s2)

We unify the goals decrease(p,!, s1) and decrease(z, 12, s7), and thereby identify the object
« of the erosion with the plain p. The goals vertical(s;) and vertical(se) also unify, telling
us the reduction was on the altitude scale. Back-chaining on plain(p) yields

landform(p) A flat(p) A etcs(p)

and landform(z) unifies with landform(p), reinforcing our identification of the object of
the erosion with the plain. Back-chaining on level’(es,!,y) yields

at'(es, y,1) A on(l,s3) A vertical(sz) A flat(y) A etes(es,y,1,53)

and vertical(s3) and vertical(sy) unify, as do flat(y) and flai(p), thereby identifying
“it”, or y, as the plain p. We have not written out the axioms for this, but note also that
“present” implies the existence of a change of level, or a change in the location of “it” on
a vertical scale, and a decrease of a plain is a change of the plain’s location on a vertical
scale. Unifying these would provide reinforcement for our identification of “it” with the
plain. Now assuming the most specific atomic formulas we have derived including all the
“et cetera” conditions, we arrive at an interpretation that is:minimal and that solves the
internal coreference problems as a by-product.!®

5.3 The Four Local Pragmatics Problems At Once
Let us now return to the example of Section 3.
Disengaged compressor after lube-oil alarm.

Recall that we must resolve the reference of “compressor” and “alarm”, discover the im-
plicit relation between the lube oil and the alarm, attach “after alarm” to either the
compressor or the disengaging, and expand “after alarm” into “after the sounding of the
alarm”.

The knowledge base includes the following axioms: There are a compressor C, an
alarm A, lube oil O, and the pressure P of the lube oil O at A:

compressor(C), alarm(A4), lube-0il(0), pressure(P,0,A)
The alarm is for the Jube oil:

for(4,0)
The for relation is a possible nn relation:

(Va,0)for(a,0) D nn(o,a)

A disengaging e; by =z of ¢ is an event:

1%This example was analyzed in a similar manner in Hobbs (1978) but not-in such_a clean fashion, since
it was without benefit of the abduction scheme.




(Ver,z, c)disengage’(e1,x,¢) D eveni(e;)

If the pressure p of the lube oil 0 at the alarm « is not adequate, then there is a sounding
ez of the alarm, and that sounding is the function of the alarm:

(Va,0,p)alarm(a) A lube-0il(0) A pressure(p,o0,a) A madequate(p)
D (3ex)sound'(eg,a) A function(eq,a)

A sounding is an event:
(Vea,a)sound'(e2,a) D event(es)
An entity can be coerced into its function:
(V ez, ) function(eg,a) D rel(es,a)
Identity is a possible coercion:
(Va)rel(z,z)
Finally, we have axioms encoding set membership:

(Vy,s)ye{y} U s
My,z,8)yes Dyefa}Us

Of the possible metonymy problems, let us confine ourselves to one posed by “after”.
Then the expression that needs to be derived for an interpretation is

(3e1,2,¢,k1, k2,9, a,0)disengage’(e1,z,¢) A compressor(c) A after(ky, ks)
Aevent(ky) A rel(k1,y) A y € {c,e1} A event(ks) A rel(k,a)
Aalarm(a) A lube-0il(0) A nn(o,a)

One way for rel(ky,y) to be true is for £y and y to be identical. We can back-chain from
event(ky) to obtain disengage’(ky,1,¢1). This can be merged with disengage/(e;,z,c¢),
yielding an interpretation in which the attachment y of the prepositional phrase is to “dis-
engage”. This identification of y with e; is consistent with the constraint y € {c,e;}. The

conjunct disengage’(e;,z,c) cannot be proved and must be assumed as new information.

The conjuncts compressor(c), lube-oil(0), and alarm(a) can be proved immediately,
resolving ¢ to C, o to O, and « to A. The compound nominal relation nn(0, A) is true
because for(A,Q) is true. One way for evenit(kz) to be true is for sound'(kq,a) to be
true, and function(ky, A) is one way for rel(ky, A) to be true. Back-chaining on each
of these and merging the results yields the goals alarm(A), lube-0il(0), pressure(p, o0, A),
and -adequate(p). Thefirst three of these can be derived immediately, thus identifying o
as O and p as P, and ~adequate(p) is assumed. We have thereby coerced the alarm into
the sounding of the alarm, and as a by-product we have drawn the correct implicature, or
assumed, that the lube oil pressure is inadequate.
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5.4 Schema Recognition

One of the most common views of “understanding” in artificial intelligence has been that
to understand a text is to match it with some pre-existing schema. In our view, this is far
too limited a notion. But it is interesting to note that this sort of processing falls out of
our abduction scheme, provided schemas are expressed as axioms in the right way.

Let us consider an example. RAINFORM messages are messages about sightings and
pursuits of enemy submarines, generated during naval maneuvers. A typical message
might read, in part,

Visual sighting of periscope followed by attack with ASROC and torpedoes.
Submarine went sinker.

An “ASROC” is an air-to-surface rocket, and to go sinker is to submerge. These messages
generally follow a single, rather simple schema. An enemy sub is sighted by one of our
ships. The sub either evades our ship or is attacked. If it is attacked, it is either damaged
or destroyed, or it escapes.

A somewhat simplified version of this schema can be encoded in an axiom as follows:

(Ver,e2,€3,2,9,...)sub-sighting-schema(ey, e2, €3, 2, y,.. .)
D sight'(e1,z,y) A friendly(z) A ship(z) A enemy(y) A sub(y)
Athen(ey,e2) A attack(ez,z,y) A outcome(es,es,z,y)

That is, if we are in a submarine-sighting situation, with all of its associated roles e, 2,

Yy, and so on, then a number of things are true. There is a sighting e; by a friendly ship

z of an enemy sub y. Then there is an attack e; by z on y, with some outcome es.
Among the possible outcomes is y’s escaping from z, which we can express as follows:

(Ves,e2,z,y)outcome(es, e2,z,y) A etci(es) = escape’(es,y,z)

We express it this way because we will have to backward-chain from the escape to the
outcome, and on to the schema.
The other facts that need to be encoded are as follows:

(Vy)sub(y) D (3 =)periscope(z) A part(z,y)

That is, a sub has a periscope as one of its parts.
(Yey,ex)then(er,e2) D follow(ez,ey)

That is, if e; and ez occur in temporal succession (then), then e, follows e;.
(Ves,y,z)escape’(e3,y,z) A etea(es, z,y) = submerge(es,y)

That is, submerging is one way of escaping.

(Ves,y)submerge'(es,y) = go-sinker'(es,y)

That is, going sinker and submerging are equivalent.
In order to interpret the first sentence of the example, we must prove its logical form,
which is, roughly,
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(3ey,z,2,e9,u,v,a,t)sight'(ey,2,2) A visual(e;) A periscope(z)
A follow(eg,e1) A attack'(eg,u,v) A with(es,a)
AASROC(¢) A with(ea,1) A torpedo(t)

" and the logical form for the second sentence, roughly, is the following:
(Fea, y1)go-sinker'(e3, 1) A sub(yr)

When we backward-chain from the logical forms using the given axioms, we end up, most
of the time, with different instances of the schema predication

sub-sighting-schema(es, e2,€3,2,y,...)

as goal expressions. Since our abductive inference method merges unifiable goal expres-
sions, all of these are unified, and this single instance is assumed. Since it is almost the
only expression that had to be assumed, we have a very economical interpretation for the
entire text.

To summarize, when a large chunk of organized knowledge comes to be known, it can
be encoded in a single axiom whose antecedent is a “schema predicate” applied to all of
the role fillers in the schema. When a text describes a situation containing many of the
entities and properties that occur in the consequent of the schema axiom, then very often
the most economical interpretation of the text will be achieved by assuming the schema
predicate, appropriately instantiated. If we were to break up the schema axiom into a
number of axioms, each expressing different stereotypical features of the situation and
each having in its antecedent the conjunction of a schema predication and an et cetera
predication, default values for role fillers could be inferred where and only where they were
appropriate and consistent.

When we do schema recognition in this way, there is no problem, as there is in other
approaches, with merging several schemas. It is just a matter of assuming more than one
schema predication with the right instantiations of the variables.

6 A Thorough Integration of Syntax, Semantics, and
Pragmatics
6.1 The Integration

By combining the idea of interpretation as abduction with the older idea of parsing as
deduction (Kowalski, 1980, pp. 52-53; Pereira and Wa: =, 1983), it becomes possible to
integrate syntax, semantics, and pragmatics in a very thorough and elegant way.16

We will present this in terms of example (2), repeated here for convenience.

(2) The Boston office called.

Recall that to interpret this we must prove the expression

16This idea is due to Stuart Shieber.
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(3a) (3z,y,2e)call'(e,z) A person(x) A rel(z,y)
(3b) A office(y) A Boston{z) A nn(z,y)

Consider now a simple grammar, adequate for parsing this sentence, written in Prolog
style: '

(Vi,5,k)np(i, 7) A verb(5, k) D s(i,k)
(Vi,4,k,D)det(s,5) A noun(j,k) A noun(k,l) D np(i,i)

That is, suppose the indices i, , k, and ! stand for the “interword points”, from 0 to the
number of words in the sentence. If there is a noun phrase from point ¢ to point j and a
verb from point j to point &, then there is a sentence from point ¢ to point £, and similarly
for the second rule. To parse a sentence is to prove s(0, N), where N is the number of
words in the sentence.

We can integrate syntax, semantics, and local pragmatics by augmenting the axioms
of this grammar with portions of the logical form in the appropriate places, as follows:

(12) (V4,4.k,9,p,6,2)np(4,5,y) A verb(4,k,p) A p'(e,2) A rel(z,y) A Reg(p,z)
D s(i,k,e€)

(13) (Vi,4,k,1, w1, wa,y,2)det(i, 5,the) A noun(j,k,w1) A noun(k,!,ws)
Awi(z) A wa(y) A na(z,9) D np(i,L,y)

The third arguments of the “lexical” predicates noun, verb, and det are the words them-
selves (or the predicates of the same name), such as Boston, office or call. The atomic
formula np(z,7,y) means that there is a noun phrase from point i to point j referring to
y. The atomic formula Reg(p,z) stands for the requirements that the predicate p places
on its argument z. The specific constraint can then be enforced if there is an axiom

(Vz)person(z) D Req(call,z)

that says that one way for the requirements to be satisfied is for z to be a person. Axiom
(12) can then be paraphrased as follows: “If there is a noun phrase from point ¢ to point j
referring to y, and the verb p (denoting the predicate p) from point j to point &, and p' is
true of some eventuality e and some entity 2, and z is related to (or coercible from) y, and
z satisfies the requirements p’ places on its second argument, then there is a sentence from
point i to point k describing eventuality e.” Axiom (13) can be paraphrased as follows:
“If there is the determiner the from point ¢ to point 7, and the noun w; occurs from point
j to point k, and the noun w; occurs from point k to point [, and the predicate w, is
true of some entity z, and the predicate ws is true of some entity y, and there is some
implicit relation nn between z and y, then there is a noun phrase from point i to point /
referring to the entity y. Note that the conjuncts from line (3a) in the logical form have
been incorporated into axiom (12) and the conjuncts from line (3b) into axiom (13).17

17 As given, these axioms are second-order, but not seriously so, since the predicate variables only need
to be instantiated to predicate constants, never to lambda expressions. It is thus easy to convert them-to
first-order axioms.
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Before when we proved s(0,4V), we proved there was a sentence from point 0 to point
N. Now, if we prove (3 ¢)s(0, NV, e), we prove there is an interpretable sentence from point
0 to point N and that the eventuality e is its interpretation.

Each axiom in the “grammar” then has a “syntactic” part—the conjuncts like np(<, 5, )
and verb(j, k, p)—that specifies the syntactic structure, and a “pragmatic” part—the con-
juncts like p'(e,z) and rel(z,y)—that drives the interpretation. That is, local pragmatics
is captured by virtue of the fact that in order to prove (3¢)s(0, N, e), one must derive the
logical form of the sentence together with the constraints predicates impose on their ar-
guments, allowing for metonymy. The compositional semantics of the sentence is specified
by the way the denotations given in the syntactic part are used in the construction of the
pragmatics part.

One final modification is necessary, since the elements of the pragmatics part have
to be assumable. If we wish to get the same costs on the conjuncts in the logical form
that we proposed at the end of Section 3, we need to augment our formalism to allow
attaching assumability costs directly to some of the conjuncts in the antecedents of Horn
clauses. Continuing to use the arbitrary costs we have used before, we would thus rewrite
the axioms as follows:

(14) (Viaj’ka Yy Dy e,m)np(i,j, y) A verb(j,k,p) A pl(e’x)SS A Tel(a",?/)sm
A Req(p,z)%° > s(i, k,e)

(15) (Yi,4,k, 1, w1, w2, y, z)dei(i, 5, the) A noun(j,k,w1) A noun(k,l,w,)
Aun(2)% A wa(y)¥° A nn(z,4)° D np(i, 1,y)

The first axiom now says what it did before, but in addition we can assume p'(e,z) for a
cost of 83, rel(z,y) for a cost of $20, and Reg(p,z) for a cost of §10.1®

Implementations of different orders of interpretation, or different sorts of interaction
among syntax, compositional semantics, and local pragmatics, can then be seen as different
orders of search for-a proof of (3¢)s(0,N,e). In a syntax-first order of interpretation, one
would try first to prove all the “syntactic” atomic formulas, such as np(%, 7, y), before any of
the “local pragmatics” atomic formulas, such as p'(e,z). Verb-driven interpretation would
first try to prove verb(j,k,p) and would then use the information in the requirements
associated with the verb to drive the search for the arguments of the verb, by deriving
Req(p',z) before back-chaining on np(%,7,y). But more fluid orders of interpretation are
obviously possible. This formulation allows one to prove those things first which are
easiest to prove, and therefore allows one to exploit the fact that the strongest clues to
the meaning of a sentence can come from a variety of sources—its syntax, the semantics
of its main verb, the reference of its noun phrases, and so on. Ii is also easy to see how
processing could occur in parallel, insofar as parallel Prolog is possible.

8 The costs, rather than weights, on the conjuncts in the antecedents are already permitted if we allow,
as Stickel (1989) does, arbitrary functions rather than multiplicative weights.
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6.2 Syntactically Ill-Formed Utterances

It is straightforward to extend this approach to deal with ill-formed or unclear utterances,
by first giving the expression to be proved (3e)s(0,N,e) an assumability cost and then
adding weights to the syntactic part of the axioms. Thus, axiom (14) can be revised as
follows:

(Vi,5,k, 9,0, ,2)np(i, 5, 4)° A verb(j, k, p) A p'(e,z)%® A rel(z, )32 A Req(p, )31
D s(i,k,e)

This says that if you find a verb, then for a small cost you can go ahead and assume
there is a noun phrase, allowing us to interpret utterances without subjects, which are
very common in certain kinds of informal discourse, including equipment failure reports
and naval operation reports. In this case, the variable y will have no identifying properties
other than what the verb phrase gives it.

More radically, we can revise the axiom to

(V,5,k,9,p, 3’ z)np(i, 5,y)* Averb(5, k,p)® Ap'(e,z)% Arel(z,y)$2° A Reg(p,2)$1°
D s(t,k,e

This allows us to assume there is a verb as well, although for a higher cost than for
assuming a noun phrase (since presumably a verb phrase provides more evidence for the
existence of a sentence than a noun phrase does). That is, either the noun phrase or
the verb can constitute a sentence if the string of words is otherwise interpretable. In
particular, this allows us to handle cases of ellipsis, where the subject is given but the
verb is understood. In these cases we will not be able to prove Req(p,z) unless we first
identify p by proving p'(e,z). The solution to this problem is likely to come from salience
in context or from considerations of discourse coherence, such as recognizing a parallel
with a previous segment of the discourse.
Similarly, axiom (15) can be rewritten to

(V4,5 k1, w1, wa,y, z)det(i, 5, the)? A noun(j, k,w1) A noun(k,l,ws) A wy(z)%
Awa(y)¥0 A n(z,4)*® D np(3,1,y)

to allow cmission of determiners, as is also very common in some kinds of informal dis-
course,

6.3 Recognizing the Coherence Structure of Discourse

In Hobbs (1985d) a theory of discourse structure is outlined in which coherence relations
such as parallel, elaboration, and explanation can hold between successive segments of a
discourse and wlen they liold, the two segments compose into a larger segment, giving
the discourse as a whole a hierarchical structure. The coherence relations can be defined
in terms of the information conveyed by the segments.

It looks as if it would be relatively straightforward to extend our method of interpre-
tation as abduction to the recognition of some aspects of this coherence structure of the
discourse. The hierarchical structure can be captured by the axiom
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(Vi,j,e)s(i,die) D Segment(i,j,e)
specifying that a sentence is a discourse segment, and axioms of the form

(Vi,4,k,e1,e2,¢)Segment(i, 7, e1) A Segment(j, k, e2) A CoherenceRel(e,, €2, €)
D Segment(i,k,e)

saying that if there is a segment from ¢ to j whose assertion or topic is e;, and a segment
from j to k asserting ep, and CoherenceRel is one of the coherence relations where e is
the assertion or topic of the composed segment as determined by the definition of the
coherence relation, then there is a segment from ¢ to k asserting e.

A first approximation of the definition for “explanation”, for example, would be the
following: :

(Vey,e2)cause(ez,e1) D Exzplanation(e;,ez,e,)

That is, if what is asserted by the second segment could cause what is asserted by the first
segment, then there is an explanation relation between the segments, and the assertion of
the composed segment is the assertion of the first segment.

The expansion relations, such as “elaboration”, “parallel”, and “contrast”, are more
difficult to capture in this way, since they require second-order formulations. For example,
the parallel relation might be encoded in an axiom schema as follows:

(Ver, ez, z,y)p'(e1,2) A p'(e2,9) A g(z) A q(y) D Parallel(ey, ez, e1&e2)

That is, the two segments assert that two entities 2 and y, which are similar by virtue of
both having property ¢, have some property p. The assertion of the composed segment is
the conjunction of the assertions of the constituent segments.1®

To interpret an N-word text, one must then prove the expression

(3e)Segment(0,N,e)

The details of this approach remain to be worked out.

This approach has the flavor of discourse grammar approaches. What has aiways been
the problem with discourse grammars is that their terminal symbols (e.g., Introduction)
and sometimes their compositions have not been computable. Because in our abductive,
inferential approach, we are able to reason about the content of the utterances of the
discourse, this problem no longer exists.

We should point out a subtle shift of perspective we have just gone through. In Sections
3, 4, and 5 of this paper, the problem of interpretation was viewed as follows: One is given
certain observable facts, namely, the logical form of the sentence, and one has to find a
proof that demonstrates why they are true. In this section, we no longer set out to prove
the observable facts. Rather we set out to prove that we are viewing a coherent situation,
and it is built into the rules that specify what situations are coherent that an explanation
must be found for the observable facts. We return to this point in the conclusion.

19See Hobbs (1985b) for explication of the notation e;&es.
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6.4 Below the Level of the Word

Interpretation can be viewed as abduction below the level of the word as well. Let us
consider written text first. Prolog-style rules can decompose words into their constituent
letters. The rule that says the word “it” occurs between point 7 and point & would be

(V4,5,k)(i,5) A T(5,k) D pro(i,k,it)

For most applications, this is not, ol course, an eflicient way to proceed. However, if we
extend the approach to ill-formed or unclear input described above to the spellings of
words, we have a way of recognizing and correcting spelling errors where the misspelling
is itself an English word. Thus, in

If is hard to recognize speech.

we are able to use constraints of syntax and pragmatics to see that we would have a good
interpretation if “it” were the first word in the sentence. The letter “i” occurring as the
first word’s first letter provides supporting evidence that tha’ is wha* we have. Thus, to
get the best interpretation, we simply assume the second letter is “t” and not “f”.

It is also likely that this approach could be extended to speech recognition by using
Prolog-style rules to decompose inorphemes intc their phonemes, or into phonetic features,
or into whatever else an acoustic processor car produce, and weighting these elements
according to their acoustic prominence. )

Suppose, for example, that the acoustic processor produces a word lattice, that is, a
list of items saying that there is a certain probability that a certain word occurs between
two points in the input stream. These can be expressed as atomic formulas of the form
word(,7) with associated assumability costs corresponding to their probabilities. Thus,
for the sentence

It is hard to recognize speech.
we might have the atomic formulas
recognize(iy, i), wreck(ty,i3), a(iz, 3), nice(is, is), speech(iy, i), beach(is, is),

each with associated assumability costs.

If the accoustic processor produces trigrams indicating the probabilities that portions
of the input stream convey certain phonemes flanked by certain other phonemes, the
compositions of words can be similarly expressed by axioms.

(V 11, %2,13, 14, is)#sp(il, i2) A ,,p"(ig, ‘i3) A pié(is, i4) A ;E#(i4, i5) D speech(z'l, i5)

The acoustic component would then assert propositions such as ;p*(4z, i3), with an assum-
ability cost corresponding to the goodness of fit of the input with the pre-stored pattern
for that trigram.

Finally, if the acoustic processor recognized distinctive features of the phonemes, ax-
ioms could also express the composition of these features into phonemes:

(Vil,ig)[—Voiced](z'l,ig) A—[+St0p](i1,i2) A [+Bilabiall(i1,12) D P(iy,17)
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Again, assumability costs would be lower for the features that were detected with more
reliability.

With any of these interfaces with accoustic processors, the approach described above
for handling ill-formed and unclear input would allow us to assume our way past elements
of the accoustic stream that were not sufficiently clear to resolve, in whatever way accords
best with syntactic and pragmatic interpretation. Thus, in the last example, if we could
not prove [—Voiced](i1,i2) and if assuming it led to the best interpretation syntactically
and pragmatically, then we could, at an appropriate cost, go ahead and assume it.

None of this should be viewed as a suggestion that the most efficient technique for
recognizing speech is unconstrained abductive theorem-proving. It is rather a framework
that allows us to see all of the processes, from phonology to discourse pragmatics, as
examples of the same sort of processing. Abduction gives us a unified view of language
understanding. Where efficient, special-purpose techniques exist for handling one aspect
of the problem, these can be viewed as special-purpose procedures for proving certain of
the propositions.

6.5 Generation as Abduction

A commonly cited appeal for declarative formalisms for grammars is that they can be used
bidirectionally, for either parsing or generation. Having thoroughly integrated parsing
and pragmatic interpretation in a declarative formalism, we can now use the forms.. m
for generation as well as interpretation. In interpretation, we know that there is some
sentence with NV words, and our task is to discover the eventuality e that it is describing.
That is, we must prove

(3e)s(0,N,e)

In generation, the problem is just the opposite. We know some eventuality E that we
want to describe, and our task is to prove the existence of a sentence of some length n
which expresses it. That is, we must prove

(3n)s(0,n, E)

In interpretation, what we have to assume is the new information. In generation, we
have to assume the terminal categories of the grammar. That is, we have to assume the
occurrence of the words in particular positions. We stipulate that when these assumptions
are made, the words are spoken.?0

Let us look again at the simple grammar of Section 6.1, this time from the point of
view of generation. A little arithmetic is introduced to avoid axioms that say a word is
one word long.

*This combines Shieber’s idea of merging interpretation as abduction and parsing as deduction with
another idea of Shieber’s (Shieber, 1988) on the relation of parsing and generation in declarative represen-
tations of the grammar.
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(12")  (Vi,k,y,pe,z)np(i,k — 1,y) A verb(k — 1,k;p) A p'(e,z) A rel(z,y)
A Req(p,x) D s(i,k,e)

(13") (Vi ,wy,we,y,2)det(i,i + 1,the) A noun(i + 1,i + 2,w,)
Anoun(i + 2,7+ 3,w2) A wi(z) A wa(y) A nn(z,y) D np(i,i+3,y)

We will also be referring to the world knowledge axioms of Section 1. Suppose we want to
assert the existence of an eventuality E which is a calling event by John who works for the
office in Boston. We need to prove there is a sentence that realizes it. A plausible story
about how this could be done is as follows. The way to prove s(0,n, E) is to prove each
of the conjuncts in the antecedent of axiom (12'). Working from what we know, namely
E, we try to instantiate p'(E,z) and we find call'(E,J;). Now that we know call and
J1 we try to prove Req(call,J;), and do so by finding person(J;). We next try to prove
rel(Jy, ). At this point we could choose the coercion relation to be identity, in which-case
there would be no metonymy. Let us instead pick work-for(J;,01). Now that we have
instantiated y as 01, we use axiom (13') to prove np(0,k — 1,0;). Since det(0,1,the) is a
terminal category, we can assume it, which means that we utter the word “the”. We next
need to find a way of describing O, by proving the expression

w1(2) A wa(0y) A nn(z,0,)

We can do this by instantiating w; to office, by finding in(O;, By), and then by proving
w1(By) by instantiating w; to the predicate Boston. We now have the terminal cate-
gory noun(1,2, Boston), which we assume, thus uttering “Boston”. We also have the
terminal category noun(2,3,office), which we assume, thus uttering “office”. Finally, we
return to axiom (12') where we complete the proof, and thus the sentence, by assuming
verd(3,4, call), thereby saying the word “call”. As usual in pedagogical examples, we
ignore tense.

The (admittedly naive) algorithm used here for searching for a proof, and thus for a
sentence, is to try to prove next those goal atomic formulas that are partially instantiated
and thus have the smallest branch factor for backward-chaining. Left-to-right generation
is enforced by initially having only 0 as an instantiated interword point.

There are at least two important facets of generation that have been left out of this
story. First of all, we choose a description of an entity in a way that will enable our hearer
to identify it. That is, we need to find properties wo(0;), and so on, that are mutually
known and that describe the entity uniquely among all the entities in focus. A more
complex story can be told that incorporates this facet. Second, utterances are actions in
larger plans that the speaker is executing to achieve some set of goals. But planning itself
can be viewed as a theorem-proving process, and thus the atomic formula s(0, 2, E') can
be viewed as a subgoal-in this plan. This view of generation as abduction fits nicely with
the view of generation as planning.

Some will find this unified view of interpretation and generation psychologically im-
plausible. It is a universal experience that we are able to interpret more utterances than
we typically, or ever, generate. Does this not mean that the grammars we use for in-
terpretation and generation are different? We think it is not necessary to tell the story
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like this, for several reasons. The search order for interpretation and generation will nec-
essarily be very different, and it could be that paths that are never taken in generation
are nevertheless available for interpretation. We can imagine a philosopher, for example,
who is deathly afraid of category errors and never uses metonymy. In proving rel(z,z)
in axiom (12') during generation, he always uses identity. But he may still have other
ways of proving it during interpretation, that he uses when he finds it necessary to talk to
non-philosophers. Furthermore, there is enough redundancy in natural language discourse
that in interpretation, even where one lacks the necessary axioms, one is usually able, by
making appropriate assumptions, to make sense out of an utterance one would not have
generated.

It is worth pointing out that translation from one language to another can be viewed
elegantly in this framework. Let s in our grammar above be renamed to sg for English,
and suppose we have a grammar for Japanese similarly incorporatirg semantics and local
pragmatics, whose “root predicate” is sj. Then the problem of translating from English to
Japanese can be viewed as the problem of proving for a sentence of length N the expression

(3e,n)sg(0,N,e) A s5(0,7n,€)

That is, there is some eventuality e described by the given English sentence of N words
and which can be expressed in Japanese by a sentence of some length n. In the simplest
cases, lexical transfer would occur by means of axioms such as

(Vz)mountain(z) = yama(z)

Because of the expressive power of first-order logic, much more complicated examples of
lexical transfer could be stated axiomatically as well. Some of the details of an abductive
approach to translation are explored by Hobbs and Kameyama (1990).

6.6 The Role of Assumptions

We have used assumptions for many-purposes: to accept new information from the speaker,
to accommodate the speaker when he seems to assume something is mutually known when
it is not, to glide over uncertainties and imperfections in the speech stream, and to utter
words, or more generally, to take actions. Is there anything that all of these uses have in
common? We think there is. In all the cases, there is a proposition that is not mutually
known, and we somehow have to treat it as if it were mutually known. In interpreting an
utterance and accepting it as true, we do this by entering the assumption into our mutual
knowledge. In parsing the speech stream, we accommodate the speaker by assuming, or
pretending if necessary, that the most appropriate token did occur in copresence with the
speaker and is thus mutual knowledge. In generation, we make the assumption true in
copresence with the hearer, and thus make it mutually known, by uttering the word or by
taking the action.

6.7 Integration versus Modularity

For the past several decades, there has been quite a bit of discussion in linguistics, psy-
cholinguistics, and related fields about the various modules involved in language processing
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and their interactions. A number of researchers have, in particular, been concerned to show
that there was a syntactic module that operated in some sense independently of processes
that accessed general world knowledge. Fodor (1983) has been perhaps the most vocal
advocate of this position. He argues that human syntactic processing takes place in a spe-
cial “informationally encapsulated” input module, immune from top-down influences from
“central processes” involving background knowledge. This position has been contentious
in psycholinguistics. Marslen-Wilson and Tyler (1987), for example, present evidence that
if there is any information encapsulation, it is not in a module that has logical form as its
output, but rather one that has a mental model or some other form of discourse represen-
tation as its output. Such output requires background knowledge in its construction. At
the very least, if linguistic processing is modular, it is not immune from top-down context
dependence. '

Finally, however, Marslen-Wilson and Tyler argue that the principal question about
modularity—“What interaction occurs bétween modules?”—is ill-posed. They suggest
that there may be no neat division of the linguistic labor into modules, and that it therefore
does not make sense to talk about interaction between modules. This view is very much
in accord with the integrated approach we have presented here. Knowledge of syntax is
just one kind of knowledge of the world. All is given a uniform representation. Any rule
used in discourse interpretation can in principle, and often in fact will, involve predications
about syntactic phenomena, background knowledge, the discourse situation, or anything
else. In such an approach, issues of modularity simply go away.

* In one extended defense of modularity, Fodor (n.d.) begins by admitting that the argu-
ments against modularity are powerful. “If you’re a modularity theorist, the fundamental
problem in psycholinguistics is to talk your way out of the massive effects of context on
language comprehension” (p. 15). He proceeds with a valiant attempt to do just that.
He begins with an assumption: “Since a structural description is really the union of rep-
resentations of an utterance in a variety of different theoretical vocabularies, it’s natural
to assume that the internal structure of the parsers is correspondingly functionally dif-
ferentiated” (p. 10). But in-our framework, this assumption is incorrect. Facts about
syntax and pragmatics are expressed in different theoretical vocabularies only in the sense
that facts about doors and airplanes are expressed in different theoretical vocabularies—
different predicates are used. But the “internal structure of the parsers” is the same. It
is all abduction.

In discussing certain sentences in which readers are “garden-pathed” by applying the
syntactic strategy of “minimal attachment”, Fodor proposes two alternatives, the first
interactionist and the second modular: “Does context bias by penetrating the parser and
suspending the (putative) preference for minimal attachment? Or does it bias by correcting
the output of the parser when minimal attachment yields implausible analyses?” (p. 37)
In our view, neither of these is true. The problem is to find the interpretation of the
utterance that best satisfies a set of syntactic, semantic, and pragmatic constraints. Thus,
all the constraints are applied simultaneously and the best interpretation satisfying them
all is selected.

Moreover, often the utterance is elliptical, obscure, ill-formed, or unclear in parts. In
these cases, various interpretive moves are available to the hearer, among them the local
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pragmatics moves of assuming metonymy or metaphor, the lexical move of assuming a
very low-salience sense of a word, and the syntactic move of insertving a ward to repair the
syntax. The last of these is required in a sentence in a rough draft that was circulated of
Fodor’s paper:

By contrast, ou the Interactive model, it’s assumed that the same processes
have access to linguistic information can also access cognitive background.

(p. 57-8)

The best way to interpret this sentence is to assume that a “that” should occur between
“processes” and “have”. There is no way of knowing a priori what interpretive moves will
yield the best interpretation for a given utterance. This fact would dictate that syntactic
analysis be completed even where purely pragmatic processes could repair the utterance
to interpretability.

In Bever’s classic example (Bever, 1970),

The horse raced past the barn fell.

there are at least two possible interpretive moves: insert an “and” between “barn” and
“fell”, or assume the rather low-frequency, causative sense of “race”. People generally
make the first of these moves. However, Fodor himself gives examples, such as

The performer sent the flowers was very pleased.

in which no such low-frequency sense needs to be accessed and the sentence is more easily
interpreted as grammatical.

Our approach to this problem is in the spirit of Crain and Steedman (1985), who argue
that interpretation is a matter of minimizing the number of presuppositions it is necessary
to assume are in effect. Such assumptions add to the cost of the interpretation.

There remains, of course, the question of the optimal order of search for a proof
for any particular input text. As pointed out in Section 6.1, the various proposals of
modularizations can be viewed as suggestions for order of search. But in our framework,
there is-no particular reason to assume a rigid order of search. It allows what seems to us
the most plausible account—that sometimes syntax drives interpretation and sometimes
pragmatics does.

It should be pointed out that if Fodor were to adopt our position, it would only be
with the utmost pessimism. According to him, we would have taken a peripheral, modular
process that is, for just that reason, perhaps amenable to investigation, and turned-it into
one of the central processes, the understanding of which, on his view, would be completely
intractable. However, it seems to us that nothing can be lost in this move. Insofar as
syntax is tractable and the syntactic processing can be traced out, this information can
be treated as information about efficient search orders in the central processes.

Finally, the reader may object to this integration because syntax and the other so-
called modules constitute coherent domains of inquiry, and breaking down the barriers
between them can only result in conceptual confusion. This is not a necessary consequence,
however. One can still distinguish, if one wants, between linguistic axioms such as (12)
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and background knowledge axioms such as (8). It is just that they will both be expressed
in the same formal language and used in the same fashion. What the integration has done
is to remove such distinctions from the code and put them into the comments.

7 Relation to Other Work

7.1 Previous and Current Research on Abduction

Prior to the late seventeenth century science was viewed as deductive, at least in the ideal.
It was felt that, on the model of Euclidean geometry, one should begin with propositions
that were self-evident and deduce whatever consequences one could from them. The
modern view of scientific theories, probably best expressed by Lakatos (1970), is quite
different. One tries to construct abstract theories from which observable events can be

-deduced or predicted. There is no need for the abstract theories to be self-evident, and

they usually are not. It is only necessary for them to predict as broad a range as possible
of the-observable data -and for them to be “elegant”, whatever that means. Thus, the
modern view is that science is fundamentally abductive. We seek hidden principles or
causes from which we can deduce the observable evidence.

This view of science, and hence the notion of abduction, can be seen first in some
passages in Newton’s Principia- (1934 [1686]). It is understandable why Newton might

‘have been driven to the modern view of scientific theories, as the fundamental principles

of his system were in no way self-evident. In his “Preface to the First Edition” (p. xvii)
he says, “The whole burden of philosophy seems to consist in this—f{rom the phenomena
of motions to investigate the forces of nature, and from these forces to demonstrate the
other phenomena.” The phenomena of motions and other phenomena correspond to the
@ of our schema and the forces of nature correspond to our P and P O . At the
beginning of Book III, before presenting the Universal Law of Gravitation, he argues for
a parsimony of causes in his first “rule of reasoning in philosophy” (p. 308): “We are to
admit no more causes of natural things than such as are both true and sufficient to explain
their appearances.” This seems to presuppose a view of scientific theorizing as abduction;
where he says “admit”, we would say “assume”; his causes are our P and P D @, and his
appearances are our (. At the end of Principia (p. 547), in a justification for not seeking
the cause of gravity, he says, “And to us it is enough that gravity does really exist, and
act according to the laws which we have explained, and abundantly serves to account for
all the motions of the celestial bodies, and of our sea.” The justification for gravity and
its laws is not in its self-evidential nature but in what it accounts for.

The term “abduction” was first used by C. S. Pierce (e.g., 1955), who also called the
process “retroduction”. His definition of it-is as follows:

The surprising fact, C, is observed;
But if A were true, C would be a matter of course,
Hence, there is reason to suspect that A is true. (p. 151)

Pierce’s C is what we have been calling ¢(A) and A is what we have been calling p(4). To
say “if A were true, C would be a matter of course” is to say that for all z, p(z) implies
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¢(z), that is, (Vz)p(z) D ¢(z). He goes on to describe what he refers to as “abductory
induction”. In our terms, this is when, after abductively hypothesizing p(A), one checks
a number of, or a random selection of, properties ¢; such that (Vz)p(z) D ¢i(z), to see
whether ¢;(A) holds. This, in a way, corresponds to our check for consistency. Then Pierce
says that “in pure abduction, it can never be justifiable to accept the hypothesis otherwise
than as an interrogation”, and that “the whole question of what one out of a number of
possible hypotheses ought to be entertained becomes purely a question of economy.” This
corresponds to our evalnation scheme.

The first use of abduction in artificial intelligence was by Pople (1973), in the context
of medical diagnosis. He gave the formulation of abduction that we have used and showed
how it can be implemented in a theorem-proving framework. Literals that are “abandoned
by deduction in the sense that they fail to have successor nodes” (p. 150) are taken as the
candidate hypotheses. Those hypotheses are best that account for the most data, and in
service of this principle, he introduced factoring or synthesis, which, just as in our scheme,
attempts to unify goal literals. Hypotheses where this is used are favored. No-further
scoring criteria are given, however.

Work on abduction in artificial intelligence was revived in the early 1980s at several
sites. Reggia and his-colleagues {e.g., Reggia et al., 1983; Reggia, 1985) formulated ab-
ductive inference in terms of parsimonious covering theory. One is given a set of disorders
(our p(A)’s) and a set of manifestations (our g(A)’s) and a set of causal relations between
disorders and manifestations (our rules of the form (Vz)p(z) DO ¢(z)). An explanation
for any set of manifestations is a set of disorders which together can cause all of the man-
ifestations. The minimal explanation is the best one, where minimality can be defined
in terms of cardinality or irredundancy. More recently, Peng and Reggia (1987a, 1987b)
have begun to incorporate probabilistic considerations into their notion of minimality. For
Reggia, the sets of disorders and manifestations are distinct, as is appropriate for medical
diagnosis, and there is no backward-chaining to deeper causes; our abduction method is
more general than his in that we can assume any proposition—one of the manifestations
or an underlying cause of arbitrary depth.

In their textbook, Charniak and McDermott (1985) presented the basic -pattern of
abduction and then discuss many of the issues involved in trying to decide among alter-
native hypotheses on:probabilistic grounds. Reasoning in uncertainty and its application
to expert systems are presented as examples of abduction.

Cox and Pietrzykowski (1986) present a formulation in a theorem-proving framework
that is very similar to Pople’s, though apparently independent. It is especially valuable
in that it considers-abduction abstractly, as a mechanism with a variety of possible ap-
plications, and not just as a handmaiden to diagnosis. The test used to select.a suitable
hypothesis is that it should be what they call a “dead end”; that is, it should not be pos-
sible to find a stronger consistent assumption by backward-chaining from the hypothesis
using the axioms in the knowledge base. However, this method is subject to a criticism
theoretically. By insisting on the logically strongest hypothesis available, the dead-end
test forces the abductive reasoning system to overcommit—to produce overly specific hy-
potheses. Often it does not seem reasonable, intuitively, to accept any of a set of very
specific assumptions as the explanation of the fact that generated them by backward-
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chaining in the knowledge base. Moreover, the location of these dead ends is often a
rather superficial and incidental feature of the knowledge i,ase that has been constructed.
Backward-chaining is a reasonable way to establish that the abductive hypothesis, in con-
junction with the knowledge base, will logically imply the fact to be explained. But this
is equally true whether or not a dead end has been reached. More backward-chaining is
not necessarily better. Other tests must be sought to distinguish among the hypotheses
reached by backward-chaining. It is in part to overcome such objections that we devised
our weighted abduction scheme.

In recent years there has been an explosion of interest in abduction in artificial intel-
ligence. A good overview of this research can be obtained from O’Rorke (1990).

In most of the applications of abduction to diagnosis, it is assumed that the relations
expressed by the rules are all causal, and in fact Josephson (1990) has argued that that is
necessarily the case in explanation. It seems to us that when one is diagnosing physical
devices, of course explanations must be in terms of physical causality. But when we
are working within an informational system, such as language or mathematics, then the
relations are implicational and not necessarily causal.

7.2 Inference in Natural Language Understanding

The problem of using world knowledge in the interpretation of discourse, and in particular
of drawing the appropriate inferences, has been investigated by a number of researchers for
the last two decades. Among the earliest work was that of Rieger (Rieger, 1974; Schank,
1975). He and his colleagues implemented a system in which a sentence was mapped into
an underlying representation on the basis of semantic information, and then all of the
possible inferences that could be drawn were drawn. Where an ambiguity was present,
those interpretations were best that yielded the most inferences. Rieger’s work was seminal
in that of those who appreciated the importance of world knowledge in text interpretation,
his implementation was probably the most general and on the largest scale. But because
he imposed no constraints on what inferences should be drawn, his method was inherently
combinatorially explosive.

Recent work by Sperber and Wilson (1986) takes an approach very similar to Rieger’s.
They present a noncomputational attempt to characterize the relevance of utterances
in discourse. They first define a contextual implication of some new information, say,
that provided by a new utterance, to be a conclusion that can be drawn from the new
information plus currently highlighted background knowledge but that cannot be drawn
from either alone. An utterance is then relevant to the extent, essentially, that it has a
large number of easily derived contextual implications. To extend this to the problem of
interpretation, we could say that the best interpretation of an ambiguous utterance is the
one that gives it the greatest relevance in the context.

In the late 1970s and early 1980s, Roger Schank and his students scaled back from the
ambitious program of Rieger. They adopted a method for handling extended text that
combined keywords and scripts. The text was scanned for particular keywords which were
used to select the pre-stored script that was most likely to be relevant. The script was
then used to guide the rest of the processing. This technique was used in the FRUMP
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program (DelJong, 1977; Schank et al., 1980) for summarizing stories on the Associated
Press news wire that dealt with terrorist incidents and with disasters. Unconstrained
inference was thereby avoided, but at a cost. The technique was necessarily limited to
very narrow domains in which the texts to be processed described stereotyped scenarios
and in which the information was conveyed in stereotyped ways. The more one examines
even the seemingly simplest examples of spoken or written discourse, the more one realizes
that very few cases satisfy these criteria.

In what can be viewed as an alternative response to Rieger’s project, Hobbs (1980)
proposed a set of constraints on the inferences that should be drawn in knowledge-based
text processing: those inferences should be drawn that are required for the most economical
solution to the discourse problems posed by the text. These problems include interpreting
vague predicates, resolving definite references, discovering the congruence of predicates
and their arguments, discovering the coherence relations among adjacent segments of text,
and detecting the relation of the utterances to the speaker’s or writer’s overall plan. For
each problem a discourse operation was defined, characterizing the forward and backward
inferences that had to be drawn for that-problem to be solved.

The difference in approaches can be characterized briefly as follows: The Rieger and the
Sperber and Wilson models assume the unrestricted drawing of forward inferences, and the
best interpretation of a text is the one that maximizes this set of inferences. The selective
inferencing model posits certain external constraints on what counts as an interpretation,
namely, that certain discourse problems must be solved, and the best interpretation is the
the set of inferences, some backward and some forward, that satisfies these constraints
most economically. In the abductive model, there is only one constraint, namely, that
the text must be explained, and the best-interpretation is the set of backward inferences
that does this most economically. Whereas Rieger and Sperber and Wilson were forward-
chaining from the text and trying to maximize implications, we are backward-chaining
from the text and trying to minimize assumptions.

7.3 Abduction in Natural Language Understanding

Grice (1975) introduced the notion of “conversational implicature” to handle examples
like the following:

A: How is John doing on his new job at the bank?
B: Quite well. He likes his colleagues and he hasn’t embezzled any money yet.

Grice argues that in order to see this as coherent, we must assume, or draw as a conver-
sational implicature, that both A and B know that John is dishonest. An implicature can
be viewed as an abductive move for the sake of achieving the best interpretation.

Lewis (1979) iniroduces the notion of “accommodation” in conversation to explain the
phenomenon that occurs when you “say something that requires a missing presupposi-
tion, and straightaway that presupposition springs into existence, making what you said
acceptable after all.” The hearer accommodates the speaker.

Thomason (1985) argued that Grice’s conversational implicatures are based on Lewis’s
rule of accommodation. We might say that implicature is a procedural characterization of
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something that, at the functional or interactional level, appears as accommodation. When
we do accommodation, implicature is what our brain does.

Hobbs (1979) recognized that many cases of pronoun reference resolution were in fact
conversational implicatures, drawn in the service of achieving the most coherent interpreta-
tion of a text. Hobbs (1983a) gave an account of the interpretation of a spatial metaphor
as a process of backward-chaining from the content of the utterance to a more specific
underlying proposition, although the details are vague. Hobbs (1982b) showed how the
notion of implicature can solve many problematic cases of definite reference. However, in
none of this work was there a recognition of the all-pervading role of abductive explanation
in discourse interpretation.

A more thorough-going early use of abduction in natural language understanding was
in the work of Norvig (1983, 1987), Wilensky (1983; Wilensky et al., 1988), and their
associates. They propose an operation of “concretion”, one of many that take place in the
processing of a text. It is a “kind of inference in which a more specific interpretation of
an utterance is made than can be sustained on a strictly logical basis” (Wilensky et al.,
1988, p. 50). Thus, “to use a pencil” generally means to write with a pencil, even though
one could use a pencil for many other purposes. The operation of concretion works as :
follows: “A concept represented as an instance of a category is passed to the concretion ]'
mechanism. Its eligibility for membership in a more specific subcategory is determined by
its ability to meet the constraints imposed on the subcategory by its associated relations
and aspectual constraints. If all applicable condicions are met, the concept becomes an
instance of the subcategory” (ibid.). In the terminology of our schema,

From ¢(A) and (Va)p(z) D ¢(z), conclude p(A4),

A is the concept, ¢ is the higher category, and p is the more specific subcategory. Whereas
Wilensky et al. view concretion as a special and somewhat questionable inference from
q(A), in the abductive approach it is a matter of determining the best explanation for g(A4).
The “associated relations and aspectual constraints” are other consequences of p(4). In
part, checking these is checking for the consistency of p(A). In part, it is being able to
explain the most with the least.

Norvig (1987), in particular, describes this process in terms of marker passing in a
semantic net framework, deriving originally from Quillian (1968). Markers are passed . ;
from node to node, losing energy with each pass, until they run out of energy. When two ]
markers collide, the paths they followed are inspected, and if they are of the right shape, ;
they constitute the inferences that are drawn. Semantic nets express implicative relations,
and their links can as easily be expressed as axioms. Hierarchical relations correspond to
axioms of the form

(Ve)p(z) > ¢(=)
and slots correspond to axioms of the form :
(V2)p(=) O (Fy)a(y,2) A r(y) ]

Marker passing therefore is equivalent to forward- and backward-chaining in a set of ax- 3
ioms. Although we do no forward-chaining, the use of “et cetera” propositions described
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in Section 4 accomplishes the same thing. Norvig’s “marker energy” corresponds to our
bl

costs; when the weights on antecedents sum to greater than one, that means cost is increas-
ing and hence marker energy is decreasing. Norvig’s marker collision corresponds to our
factoring. We believe ours is a more compelling account of interpretation. There is really
no justification for the operation of marker passing beyond the pretheoretic psychological
notion that there are associations between concepts and one concept reminds us of another.
And there is no justification at all for why marker collision is what should determine the
inferences that are drawn and hence the interpretation of the text. In our formulation,
by contrast, the interpretation of a text is the best explanation of why it would be true,
“marker passing” is the search through the axioms in the knowledge base for a proof, and
“marker collision” is the discovery of redundancies that yield more economic explanations.

Charniak and his associates have also been working out the details of an abductive
approach to interpretation for a number of years. Charniak (1986) expresses the funda-
mental insight: “A standard platitude is that understanding something is relating it to
what one already knows. ... One extreme example would be to prove that what one is
told must be true on the basis of what one already knows. ... We want to prove what one
is told given certain assumptions.”

To compare Charniak’s approach with ours, it is useful to examine in detail one of his

operations, that for resolving definite referer.ces. In Charniak and Goldman (1988) the
rule is given as follows:

(inst ?x ?frame) =
(OR (PExists (y : 7?frame)(== 7x ?y))*°
(—0R (role-inst ?x ?superfrm ?slot)
(Exists (?s : ?superfrm)
== (?slot ?s) ?x))))1)

For the sake of concreteness, we will look at the example
John bought a new car. The engine is already acting up.

where the problem is to resolve “the engine”. For the sake of comparing Charniak and
Goldman’s with our approach, let us suppose we have the axiom

(16) (Vy)car(y) D (3z)engine-of (z,y) A engine(z)

That is, if y is a car, then there is an engine 2 which is the engine of y. The relevant
portion of the logical form of the second sentence is

3...,z,...). . A engine(z) A ...

and after the first sentence has been processed, car(C) is in the knowledge base.

Now, Charniak and Goldman’s expression (inst ?x 7frame) says that an entity ?x,
say, the engine, is an instance of a frame ?frame, such as the frame engine. In our
terminology, this is simply engine(z). The first disjunct in the conclusion vf the rule says
that a y instantiating the same frame previously exists (PExists) in the text and is equal
to (or the best name for) the mentioned engine. For us, that corresponds to the case
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where we already know engine(E) for some E. In the second disjunct, the expression
(role-inst ?x ?superfrm ?slot) says that 7x is a possible filler for the ?slot slot in
the frame ?superfrm, as the engine « is the engine a is a possible filler for the engine-of
slot in the car frame. In our formulation, that corresponds to backward-chaining using
axiom (16) and finding the predicate car. The expression

(Exists (?s : 7superfrm)(== (7slot ?s) 7x))

says that some entity ?s instantiating the frame 7superfrm must exist, and its ?slot slot
is equal to (or the best name for) the definite entity ?x. So in our example, we need to
find a car whose existence is known or can be inferred. The operator —0R tells us to infer
its first argument in all possible ways and then to prove its second argument with one of
the resulting bindings. The superscripts on the disjuncts are probabilities that result in
favoring the first over the second, thereby favoring shorter proofs.

The two disjuncts of Charniak and Goldman’s rule therefore correspond to the two
cases of not having to use axiom (16) in the proof of the engine’s existence and having
to use it. There are two ways of viewing the difference between Charniak and-Goldman’s
formulation and ours. The first is that whereas they must explicitly state complex rules
for definite reference, lexical disambiguation, case disambiguation, plan recognition, and
other discourse operations in a complex metalanguage, we simply do backward-chaining
on a set of axioms expressing our knowledge of the world. Their rules can be viewed as
descriptions of this backward-chaining process: If you find (z) in the text, then look for
an r(A) in the preceding text, or, if that fails, look for an axiom of the form

(Y9)p(y) O (F2)a(z,y) A (z)

and a p(B) in the preceding text or the knowledge base, and make the appropriate iden-
tifications.

Alternatively, we can view Charniak and Goldman’s rule as an axiom schema, one of
whose instances is

(Vz)engine(z) D [(Qy)engine(y) A y = z]
V[(3y)ear(y) A engine-of(z,y)]
VI[(3y)truck(y) A engine-of(z,y)]
V[(3y)plane(y) A engine-of(z,y)]
V...

Konolige (1990) points out that abduction can be viewed as nonmonotonic reasoning
with closure axioms and minimization over causes. That is, where there are a number of
potential causes expressed as axioms of the form P; O @, we can write the closure axiom
Q D PV P,V ... saying that if @ holds, then one of the P;’s must be its explanation.

Then instead of backward-chaining through axioms of the first sort, we forward chain-

through axioms of the second sort. Minimization over the P;’s, or assuming as many
of them as possible to be false, then selects the most economic conjunctions of P;’s for
explaining . Our approach is of the first sort, Charniak and Goldman’s of the second.
In more recent work, Goldman and Charniak (1990; Charniak and Goldman, 1989)
have begun to implement thejr interpretation procedure in the form of an incrementally
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built belief network (Pearl, 1988), where the links between the nodes, representing influ-
ences between events, are determined from the axioms, stated as described above. They
feel that one can make not unreasonable estimates of the required probabilities, giving a
principled semantics to the numbers. The networks are then evaluated and ambiguities
are resolved by looking for the highest resultant probabilities.

It is clear that minimality in the number of assumptions is not adequate for choosing
among interpretations; this is why we have added weights. Ng and Mooney (1990) have
proposed another criterion, which they call “explanatory coherence”. They define a “co-
herence metric” that gives special weight to observations explained by other observations.
One ought to be able to achieve this by factoring, but they give examples where factoring
does not work. Their motivating examples, however, are generally short, two-sentence
texts, where they fail to take into account that one of the facts to be explained is the
adjacency of the sentences in a single, coherent text. When one does, one sees that their
supposedly simple but low-coherence explanations are bad just because they explain so
little. We believe it remains to be established that the coherence metric achieves anything
that a minimality metric does not.

There has been other recent work on using abduction in the solution of various natu-
ral language problems, including the problems of lexical ambiguity (Dasigi, 1988, 1990),
structural ambiguity (Nagao, 1989}, and lexical selection (Zadrozny and Kokar, 1990).

8 Future Directions

8.1 Making Abduction More Efficient

Deduction is explosive, and since the abduction scheme augments deduction with two
more options at each node—assumption and factoring—it is even more explosive. We are
currently engaged in an empirical investigation of the behavior of this-abductive scheme
on a knowledge base of nearly 400 axioms, performing relatively sophisticated linguistic
processing. So far, we have begun to experiment, with good results, with three different
techniques for controlling abduction—a type hierarchy, unwinding or avoiding transitivity
axioms, and various heuristics for reducing the branch factor of the search.

We expect our investigation to continue to yield techniques for controlling the abduc-
tion process.

The Type Hierarchy: The first example on which we tested the abductive scheme
was the sentence

There was adequate lube oil.

The system got the correct interpretation, that the lube oil was the lube oil in the lube oil
system of the air compressor, and-it assumed that that lube oil was adequate, But it also
got another interpretation. There is a mention in the knowledge base of the adequacy of
the lube oil pressure, so the system identified that adequacy with the adequacy mentioned
in the sentence. It then assumed that the pressure was lube oil.

It is clear what went wrong here. Pressure is a magnitude whereas lube oil is a
material, and magnitudes can’t be materials. In principle, abduction requires a check
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for the consistency of what is assumed, and our knowledge base should have contained
axioms from which it could be inferred that a magnitude is not a material. In practice,
unconstrained consistency checking is undecidable and, at best, may take a long time.
Nevertheless, one can, through the use of a type hierarchy, eliminate a very large number
of possible assumptions that are likely to result in an inconsistency. We have consequently
implemented a module that specifies the types that various predicate-argument positions
can take on, and the likely disjointness relations among types. This is a. way of exploiting
the specificity of the English lexicon for computational purposes. This addition led to a
speed-up of two orders of magnitude.

A further use of the type hierarchy speeds up processing by a factor of 2 to 4. The
types provide prefiltering of relevant axioms for compound nominal, coercion, and other
very general relations. Suppose, for example, that we wish to prove rel(a,b), and we have
the two axioms

n(z,y) D rel(z,y)
pZ(may) o 7‘61(3"73/)

Without a type hierarchy we would have to backward-chain on both of these axioms.
If, however, the first of the axioms is valid only when z and y are of types {; and ts,
respectively, and the second is valid only when z and y are of types t3 and t,, respectively,
and @ and b have already been determined to be of types t; and ¢, respectively, then we
need to backward-chain on only the first of the axioms.

There is a problem with the type hierarchy, however. In an ontologically promiscuous
notation, there is no commitment in a primed proposition to truth or existence in the real
world. Thus, lube-oil’(e,0) does not say that o is lube oil or even that it exists; rather
it says that e is the eventuality of o’s being lube oil. This eventuality may or may not
exist in the real world. If it does, then we would express this as Rezists(e), and from
that we could derive from axioms the existence of o and the fact that it is lube oil. But
e’s existential status could be something different. For example, e could be nonexistent,
expressed as not(e) in the notation, and in English as “The eventuality e of o’s being lube
oil does not exist,” or simply as “o is not lube o0il.” Or e may exist only in someone’s
beliefs or in some other possible world. While the axiom

(Vz)pressure(z) D -lube-oil(z)
is certainly true, the axiom
(Vey,z)pressure/(er,z) D (3 ez)lube-0il'(e2, z)

would not be true. The fact that a variable occupies the second argument position of the
predicate lube-oil’ does not mean it is lube oil. We cannot properly restrict that argument
position to be lube oil, or fluid, or even a material, for that would rule out perfectly true
sentences like “Truth is not lube oil.”

Generally, when one uses a type hierarchy, one assumes the types to be disjoint sets
with cleanly defined boundaries, and one assumes that predicates take arguments of only
certain types. There are a lot of priblems with this idea. In any case, in our work, we
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are not buying into this notion that the universe is typed. Rather, we are using the type
hierarchy strictly as a heuristic, as a set of guesses not about what could or could not
be but about what it would or would not occur to someone to say. When two types are
declared to be disjoint, we are saying that they are certainly disjoint in the real world, and
that they are very probably disjoint everywhere except in certain bizarre modal contexts.
This means, however, that we risk failing on certain rare examples. We could not, for
example, deal with the sentence, “It then assumed that the pressure was lube oil.”

Unwinding or Avoiding Transitivity Axioms: At one point, in order to conclude
from the sentence

Bombs exploded at the offices of French-owned firms in Catalonia.

that the country in which the terrorist incident occurred was Spain, we wrote the following
axiom:

(Vz,y,2)in(z,y) A partof(y,z) D in(z,z)

That is, if z is in y and y is a part of z, then z is also in 2. The interpretation of this
sentence was taking an extraordinarily long time. When we examined the search space, we
discovered that it was dominated by this one axiom. We replaced the axiom with several
axioms that limited the depth of recursion to three, and the problem disappeared.

In general, one must exercise a certain discipline in the axioms one writes. Which
kinds of axioms cause trouble and how to replace them with adequate but less dangerous
axioms is a matter of continuing investigation.

Reducing the Branch Factor of the Search: It is always useful to reduce the
branch factor of the search for a proof wherever possible. We have devised several heuristics
so far for accomplishing this.

The first heuristic is to prove the easiest, most specific conjuncts first, and then to
propagate the instantiations. For example, in the domain of naval operations reports,
words like “Lafayette” are treated as referring to classes of ships rather than to individual
ships. Thus, in the sentence

Lafayette sighted.

“Lafayette” must be coerced into a physical object that can be sighted. We must prove
the expression

(Jz,y)sight(z,y) A rel(y,z) + Lafayette(z)

The predicate Lafayette is true only of the entity LAFAYETTE-CLASS. Thus, rather
than trying to prove rel(y,z) first, leading to a very explosive search, we try first to
prove Lafayette(z). We succeed immediately, and propagate the value LAFAYETTE-
CLASS for z. We thus-have to prove rel(y,LAFAYETTE-CLASS). Because of the type of
LAFAYETTE-CLASS, only one axiom applies, namely, the one allowing coercions from
types to tokens that says that y must be an instance of LAFAYETTE-CLASS.

Similar heuristics involve solving reference problems before coercion problems and
proving conjuncts whose source is the head noun of a noun phrase before proving conjuncts
derived from adjectives.
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Another heuristic is to eliminate assumptions wherever possible. We are better off
if at any node, rather than having either to prove an atomic formula or to assume it,
we only have to prove it. Some predicates are therefore marked as nonassumable. One
category of such predicates is the “closed-world predicates”, those predicates such that
we know all entities of which the predicate is true. Predicates representing proper names,
such as Enterprise, and classes, such as Lafayetle, are examples. We don’t assume these
predicates because we know that if they are true of some entity, we will be able to prove
it.

Another category of such predicates is the “schema-related” predicates. In the naval
operations domain, the task is to characterize the participants in incidents described in
the message. This is done as described in Section 5.4. A schema is encoded by means of
a schema predication, with an argument for each role in the schema. Lexical realizations
and other consequences of schemas are encoded by means of schema axioms. Thus, in
the jargon of naval operations reports, a plane can splash another plane. The underlying
schema is called Init-Act. There is thus an axiom

(Vz,y,...)Init-Act(z,y,attack,...) O splash(z,y)

Schema-related predicates like splash occurring in the logical form of a sentence are gives.
very large assumption costs, effectively preventing their being assumed. The weight asso-
ciated with the antecedent of the schema axioms is very very small, so that the schema
predication can be assumed very cheaply. This forces backward-chaining into the schema.

In addition, in the naval operations application, coercion relations are never assumed,
since constraints on the arguments of predicates are what drives the use of the type
hierarchy.

Factoring also multiplies the size of the search tree wherever it can occur. As explained
above, it is a very powerful method for coreference resolution. It is based on the principle
that where it can be inferred that two entities have the same property, there is a good
possibility that the two entities are identical. However, this is true only for fairly specific
properties. We don’t want to factor predicates true of many things. For example, to
resolve the noun phrase

ships and planes
we need to prove the expression
(3=,$1,9,82)Plural(z,s1) A ship(z) A Plural(;;/,s;;) A plane(y)

where Plural is taken to be a relation between the typical element of a set and the set itself.
If we applied factoring indiscriminately, then we would factor the conjuncts Plural(z,s;)
and Plural(y, s2), identifying  with y-and s; with s;. If we were lucky, this interpretation
would be rejected because of a type violation——planes aren’t ships. But this would waste
time. It is more reasonable to say that very general predicates such as Plural provide no
evidence for identity.

The type hierarchy, the discipline imposed in writing axioms, and the heuristics for
limiting search all make the system less powerful than it would otherwise be, but we
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implement these techniques for the sake of efficiency. We are trying to locate the system
on a scale whose extremes are efficiency and power. Where on that scale we achieve
optimal performance is a matter of ongoing investigation. '

8.2 Other Pragmatics Problems

In this paper we have described our approach to the problems of reference resolution,
compound nominal interpretation, syntactic ambiguity, metonymy resolution, and schema
recognition. These approaches have been worked out, implemented, and tested on a fairly
large scale. We intend similarly to work out the details of an abductive treatment of
other problems in discourse interpretation. These include the local pragmatics problems
of lexical ambiguity, metaphor interpretation, and the resolution of quantifier scope ambi-
guities. Other problems of interest are the recognition of discourse structure (what Agar
and Hobbs (1982) call local coherence) the recognition of the relation between the utter-
ance and the speaker’s plan (global coherence), and the drawing of quantity and similar
implicatures. We will indicate very briefly for each of these problems what an abductive
approach might look like.

Lexical Ambiguity: It appears that the treatment of lexical ambiguity is reasonably
straightforward. in our framework, adopting an approach advocated by Hobbs (1982a) and
similar to the “polaroid word” method of Hirst (1987). An ambiguous word, like “bank”,
has a corresponding predicate bank which is true of both financial institutions and the
‘banks of rivers. There are two other predicates, bank; true of financial institutions and
bank, true of banks of rivers. The three predicates are related by the two axioms

(Vz)bank,(x) D bank(z)
(Vz)banky(z) D bank(z)

All world knowledge is then expressed in terms of either bank; or banks, not in terms of
bank. In interpreting the text, we use one or the other of the axioms to reach into the
knowledge base, and whichever one we use determines the intended sense of the word.
Where these axioms are not used, it is-apparently because the best interpretation of the
text did not require the resolution of the lexical ambiguity.

This approach is essentially the same as the first-order approach to the compound
nominal and metonymy problems.

Metaphor Interpretation: Hobbs (1983a) gave an account of metaphor interpreta-
tion within an inferential framework. There it was argued that metaphor interpretation is
a-matter of selecting the right inferences from what is said and rejecting the wrong ones.
Thus, from 7

John is an-elephant.

we may infer that John is large or clumsy or has a good memory, but we won’t infer that
we should kill him for ivory. It was also shown how large-scale metaphor schemas could
be handled in the same way. (See also Lakoff and Johnson, 1980, and Indurkhya, 1987.)
This account was developed in a framework that ran the arrows in the opposite direction
from the way they are in an abductive account. It was asked what one could infer from
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the text rather than what the text could be inferred from. But as described in Section
4, in the abductive approach implications can be converted into biconditionals, so it may
be that this account of metaphor interpretation can be-converted relatively easily into an
abductive approach. The details remain to be worked out, however.

Resolving Quantifier Scope Ambiguities: Hobbs (1983b) proposed a flat repre-
sentation for sentences with multiple quantifiers, consisting of a conjunction of atomic
formulas, by admitting variables denoting sets and typical elements of sets, where the
typical elements behave essentially like reified universally quantified variables, similar to
McCarthy’s (1977) “inner variables”. Webber (1978), Van Lehn (1978), Mellish (1985),
and Fahlman (1979) have all urged similar approaches in some form or other, although
the technical details of such an approach are by no means easy to work out. (See Shapiro,
1980.) In such an approach, the initial logical form of a sentence, representing all that
can be determined from syntactic analysis alone without recourse to world knowledge, is
neutral with respect to the various possible scopings. As various constraints on the quanti-
fier structure are discovered during pragmatics processing, the information is represented
in the form of predications expressing “functional dependence” relations among sets and
their typical elements. For example, in

Three women in our group had a baby last year.

syntactic analysis of the sentence tells us that there is an entity w that is the typical
example of a set of women, the cardinality of which is three, and there is an entity b that
in some sense is a baby. What needs to be inferred is thai & is functionally dependent on
w.

In an abductive framework, what needs to be worked out is what mechanism will
be used to infer the functional dependency. Is-it, for example, something that must
be assumed in order to avoid contradiction when the main predication of the sentence
is assumed? Or is it something that we somehow infer directly from the propositional
content of the sentence. Again, the problem remains to be worked out.

It may also be that if the quantifier scoping possibilities were built into the grammar
rules in the i.tegrated approach of Section 6, much as Montague (1974) did, the whole
problem of determining the scopes of quantifiers will simply disappear into the larger
problem of searching for the best interpretation, just as the problem of syntactic ambiguity
did.

Discourse Structure: Hobbs (1985d) presented an account of discourse coherence
in terms of a small number of “coherence relations” that can obtain between adjacent
segments of text, recognizable by the content of the assertions of the segments. There are
two possible approaches to this sort of discourse structure that we expect to explore. The
first is the approach outlined in Section 6.3 above.

There is a second approach we may also explore, however. In 1979, Hobbs published
a paper entitled “Coherence and Coreference”, in which it was argued that coreference
problems are often solved as a by-preduct of recognizing coherence. It may be appropriate,
however, to turn this observation on its head and to see the coherence structure of the
text as a kind of higher-order coreference. (This is similar to the approach of Lockman
and Klapholz (1980) and Lockman (1978).) Where we see two sentences as being in an
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elaboration relation, for example, it is because we have inferred the same eventuality from
the assertions of the two sentences. Thus, from both of the sentences

John can open Bill’s safe.
He knows the combination.

we infer that there is some action that John/he can do that will cause the safe to be open.
Rather than taking this to be the definition of a coherence relation of elaboration, we may
instead want to view the second sentence as inferrable from the first, as long as certain
other assumptions of a default nature are made. From this point of view, recognizing
elaborations looks very much like ordinary reference resolution, as described in Section 3.

Causal relations can. be treated similarly. Axioms would tell us in a general way what
kinds of things cause and are caused by what. In

John slip »2d on a banana peel,
and brok. ais back.

we cannot infer the entire content of the second clause from the first, but we know in a
general way that slipping tends to cause falls, and falls tend to cause injuries. If we take
the second clause to contain an implicit definite reference to an injury, we can recover
the causal relation between the two events, and the remainder of the specific information
about the injury is new information and can be assumed.

Recognizing parallelism is somewhat more complex, but perhaps it can be seen as a
kind of definite reference to types.

A disadvantage of this approach to discourse coherence is that it does not yield the
large-scale coherence structure of the discourse in the same way as in the approach based
on coherence relations. This is important because the coherence structure structures the
context against which subsequent sentences are interpreted.

Recognizing the Speaker’s Plan: It is a very common view that to interpret an
utterance is to discover its relation to the speaker’s presumed plan, and on any account,
this relation is an important component of an interpretation. The most fundamental of
the objections that Norvig and Wilensky (1990) raise to current abductive approaches
to discourse interpretation is that they take as their starting point that the hearer must
explain why the utterance is true rather than what the speaker was trying to accomplish
with it. We agree with this criticism. Let us look at things from the broadest possible
context. An intelligent agent is embedded in the world. Just as a hearer must explain
why a sequence of words is a sentence or a coherent text, our agent must, at each instant,
explain why the complete set of observables it is encountering constitutes a coherent
situation. Other agents in the environment are viewed as intentional, that is, as planning
mechanisms, and that means their observable actions are sequences of steps in a coherent
plan. Thus, making sense of the environment entails making sense of other agents’ actions
in terms of what they are intended to achieve. When those actions are utterances, the
utterances must be related to the goals those agents are trying to achieve. That is, the
speaker’s plan must be recognized.

Recognizing the speaker’s plan is a problem of abduction. If we encode as axioms
beliefs about what kinds of actins cause and enable what kinds of events and conditions,
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then in the presence of complete knowledge, it is a matter of deduction to prove that a
sequence or more complex arrangement of actions will achieve an agent’s goals, given the
agent’s beliefs. Unfortunately, we rarely have complete knowledge. We will almmost always
have to make assumptions. That is, abduction will be called for. To handle this aspect of
interpretation in our framework, therefore, we can take it as one of our tasks, in addition
to proving the logical form, to prove abductively that the utterance contributes to the
achievement of a goal of the speaker, within the context of a coherent plan. In the process
we ought to find ourselves making many of the assumptions that hearers make when they
are trying to “psych out” what the speaker is doing by means of his or her utterance.
Appelt and Pollack (1990) have begun research on how weighted abduction can be used
for the plan ascription problem.

There’is a point, however, at which the “intentional” view of interpretation becomes
trivial. It tells us that the proper interpretation of a compound nominal like “coin copier”
means what the speaker intended it to mean. This is true enough, but it offers us virtually
no assistance in determining what it really does mean. It is at this point where the
“informational” view of interpretation comes into play. We are working for the most part
in the domain of common knowledge, so in fact what the speaker intended a sentence
to mean is just what can be proved to be true from that base of common knowledge.
That is, the best interpretation of the sentence is the best explanation for why it would
be true, given the speaker and hearer’s common knowledge. So while we agree that the
intentional view of interpretation is correct, we believe that the informational view is-a
necessary component of that, a component that moreover, in analyzing long written texts
and monologues, completely overshadows all other components.

Quantity Implicatures: When someone says,

(17) I have two children.

we conclude, in most circumstances, in a kind of implicature, that he does not have three
children. If he had three children, he would have said so. This class of implicature has
been studied by Levinson (1983), among others.

The general problem is that often the inferences we draw from an utterance are de-

termined by what else the speaker could have said but didn’t. Thus, in Grice’s (1975)
example,

Miss X produced a series of sounds that corresponded closely with the score
of “Home sweet home”.

we conclude from the fact that the speaker could have said, “Miss X sang ‘Home sweet
home’”, that in fact opening the mouth and making noises did not constitute singing,
even though we might normally assume it would.

The logical structure of this phenomenon is the following: The speaker utters U;.
The best interpretation for Uy is I;. But the hearer uses his own generation processes to
determine that if one wanted to convey meaning I;, the most reasonable utterance would
be Uz. There must be some reason the speaker chose to say U; instead. The hearer thus
determines the content of U, that is not strictly entailed by Uj, and concludes that that
difference does not hold. From sentence (17), the most reasonable interpretation I is that
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| Children |> 2. If the speaker had three children, the most natural utterance U, would
be “I have three children.” Thus, we draw as an implicature the negation of the difference
between Uz and Uy, namely, =(| Children |> 2).

This is a rather formidable phenomenon to proceduralize, because it seems to involve
the hearer in the whole process of generation, and not just of one sentence, but rather of
all the different ways the same information could have been conveyed.

We do not have a clear idea of how we would handle this phenomenon in our framework.
But we are encouraged by the fact that interpretation and generation can be captured in
exactly the same framework, as described in Section 6.6. It is consequently quite possible
that this framework will give us a mechanism for examining not just the interpretation of
an utterance but also adjacent possible realizations of that interpretation.

8.3 What the Numbers Mean

The problem of how to combine symbolic and numeric schemes-in the most effective way,
exploifing the expressive power of the first and the evaluative power of the second, is one
of the most significant problems that faces researchers in artificial intelligence today. The
abduction scheme we have presented attempts just this. However, our numeric component
is highly ad hoc at the present time. We need a more principled account of what the
numbers mean. Here we point out several possible lines of investigation.

First let us examine the roles of weights. It seems that a principled approach is most
likely to be one that relies on probability. But what is the space of events over which the
probabilities are to be calculated? Suppose we are given our corpus of interest. Imagine
that a TACITUS-system-in-the-sky runs on this entire corpus, interpreting all the texts
and instantiating all the abductive inferences it has to draw. This gives us a set of
propositions @ occurring in the texts and some propositions P drawn from the knowledge
base. It is possible that the weights w; should be functions of probabilities and conditional
probabilities involving instances of the concepts P and instances of concepts Q.

Given this space of events, the first question is how the weights should be distributed

across the conjuncts in the antecedents of Horn clauses. In formula (6), repeated here for
convenience,

(6) P AP”DQ

one has the feeling that the weights should correspond somehow to the semantic contri-
bution that each of P, and P, make to ). The semantic contribution of P; to @ may best
be understood in terms of the conditional probability that an instance of concept @ is an
instance of concept P; in the space of events, Pr(Q | P;). If we distribute the total weight
w of the antecedent of (6) according to these conditional probabilities, then

w: = —wPrQIP)
T Pr(QIP)+Pr(QIR)

The next question is what the total weight on the antecedent should be. To address
this question, let us suppose that all the axioms have just one conjunct in the antecedent.
Then we consider the set of axioms that have @ as the conclusion:
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A" D Q
P%>5Q
P* > Q
Intuitively, the price we will Lave to pay for the use of each axiom should be inversely
related to the likelihood that @ is true by virtue of that axiom. That is, we want to look
at the conditional probability that P; is true given Q, Pr(P: | Q). The weights w; should
be ordered in the reverse order of these conditional probabilities. We need to include in
this ordering the likelihood of @ occurring in the space of events without any of the P;’s
occurring, Pr(=(Py A ... A Pt) | Q), to take care of those cases where the best assumption
for Q@ was simply @ itself. In assigning weights, this should be anchored at 1, and the
weights w; should be assigned accordingly.
All of this is only the coarsest pointer to a serious treatment of the weights in terms
of probabilities.
A not entirely dissimilar approach to the question is in terms of model preference
relations for nonmonotonic logics (Shoham, 1987). This is suggested by the apparent

resemblance between our abduction scheme and various forms of nonmonotonic logic. For
example, in circumscriptive theories (McCarthy, 1987) it is usual to write axioms like

(Vz)bird(z) A 2Abi(z) D flies(x)
This certainly looks like the axiom
(Va)bird(z) A etey(z) D flies(z)

The literal ~Ab;(z) says that = is not abnormal in some particular respect. The literal
etci(z) says that @ possesses certain unspecified properties, for example, that z is not
abnormal in that same respect. In circumscription, one minimizes over the abnormality
predicates, assuming they are false wherever possible, perhaps with a partial ordering on
abnormality predicates to determine which assumptions to select (e.g., Poole, 1989). Our
abduction scheme generalizes this a bit: The literal etci(z) may be assumed if no contra-
diction results and if the resulting proof is the most economical one available. Moreover,
the “et cetera” predicates can be used for any kind of differentiae distinguishing a species
from the rest of a genus, and not just for those related to normality.

This observation suggests that a semantics can be specified for the abduction scheme
along the lines developed for nonmonotonic logic. Appelt (1990) is exploring an approach
to the semantics of the weights, based not on probabilities but on preference relations
among models. Briefly, when we have two axioms of the form

P D Q
P2 5 Q

where w, is less than w,, we take this to mean that if then every model in which Py, @,
and - P; are true is preferred over some model in which P, @, and ~P; are true. Appelt’s
approach exposes problems of unintended side-effects. Elsewhere among the axioms, P,
may entail a highly preferred proposition, even though ws is larger than w;. To get
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around this problem, Appelt must place very tight global constraints on the assignment of
weights. This difficulty may be fundamental, resulting from the fact that .he abduction
scheme attempts to make global judgments on the basis of strictly local information.

So far we have only talked about the semantics of the weights, and not the costs. Hasida
(personal communication) has suggested that the costs and weights be viewed along the
lines of an economic model of supply and demand. The requirement to interpret texts
creates a demand for propositions to be proved. The costs reflect that demand. Those
most likely to anchor the text referentially are the ones that are in the greatest demand;
therefore, they cost the most to assume. The supply, on the other hand, corresponds to
the probability that the propositions are true. The more probable the proposition, the
less it should cost to assume, hence the smaller the weight.

Charniak and Shimony (1990) have proposed a probabilistic semantics for weighted
abduction schemes. They make the simplifying assumption that a proposition always
has the same cost, wherever it occurs in the inference process, although rules thémselves
may also have an associated cost. They consider only the propositional case, so, for
example, no factoring or equality assumptions are needed. They further assume that the
axioms are acyclic. Finally, they concern themselves only with the probability that the
propositions are true, and do not try to incorporate utilities into their cost functions as we
do. They show that a set of axioms satisfying these restrictions can be converted into a
Bayesian network where the negative logarithms of the prior probabilities of the nodes are
the assumability costs of the propositions. They then show that the assignment of truth
values to the nodes in the Bayesian network with maximum probability given the evidence
is equivalent to the assignment of truth values to the propositions that minimizes cost.
We view this as a promising start toward a semantics for the less restricted abduction
scheme we have used.

A further requirement for the scoring scheme is that it incorporate not only the costs
of assumptions, but also the costs of inference steps, where highly salient inferences cost
less than inferences of low salience. The obvious way to do this is to associate costs with
‘the use of each axiom, where the costs are based on the axiom’s salience, and to levy
that cost as a charge for each proof step involving the axiom. If we do this, we need a
way of correlating the cost of inference steps with the cost of assumptions; there must be
a common coin of the realm. Can we develop a semantics for the numbers that relates
assumption costs and-inference costs? Two moves are called for: interpreting the cost of
inference as uncertainty and interpreting salience as truth in a local theory.

The first move is to recognize that virtually all of our knowledge is uncertain to some
degree. Then we can view the cost of using an axiom to be a result of the greater un-
certainty that is introduced by assuming that axiom is true. This can be done with “et
cetera” propositions, either at the level of the axiom as a whole or at the level of its
instantiations. ‘To associate the cost with the general axiom, we can write our axioms as
follows:

(Vz)[p(z) A etcfCl D ¢(2))

That is, there is no dependence on z. Then we can use any number of instances of the
axiom once we pay the price ¢;. To associate the cost with each instantiation of the axiom,
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we can write our axioms as follows:
(V2)[p(=) A eter(x)% D g(z))

Here we must pay the price of ¢; for every instance of the axiom we use. The latter style
seems more reasonable.

Furthermore, it seems reasonable not to charge for multiple uses of particular instan-
tiations of axioms; we need to pay for etc;(A) only once for any given A. This intuition
supports the uncertainty interpretation of inference costs.

It is easy to see how a salience measure can be implemented in this scheme. Less
salient axioms have higher associated costs ¢;. These costs can be changed from situation
to situation if we take the cost ¢; to be not a constant but a function that is sensitive
somehow to the contextual factors affecting the salience of different clusters of knowledge.
Alternatively, if axioms are grouped into clusters and tagged with the cluster they belong
to, as in

(V2)p(z) A clustersr > q(a:)‘

then- whole clusters can be moved from low salience to high salience by paying the cost
$¢1 of the “proposition” cluster exactly once.

But can this use of the costs also be interpreted as a measure of uncertainty? We
suspect it can, based on ideas discussed in Hobbs (1985¢). There it.is argued that whenever
intelligent agents are interpreting and acting in specific environments, they are doing so
not on the basis of everything they know, their entire knowledge base, but rather on the
basis of local theories that are already in place for reasoning about this type of situation
or are constructed somehow for the occasion. At its simplest, a local theory is a relatively
small subset of the entire knowledge base; more complex versions are also imaginable, in
which. axioms are modified in some way for the local theory. In this view, a local theory
creates a binary distinction between the axioms that are true in the local theory and
the axioms in the global theory that are not necessarily true. However, in the abductive
framework, the local theory can be given a graded edge by assigning values to the costs
¢1 in the right way. Thus, highly salient axioms will be in the core of the local theory
and will have relatively low costs. Low-salience axioms will be ones for which there is a
great deal of uncertainty as-to whether they are relevant to the given situation and thus
whether they should actually be true in the local theory; they will have relatively high
costs. Salience can thus be seen as a measure of the certainty that an axiom is true in the
local theory.

Josephson et al. (1987) have argued that an evaluation scheme must consider the
following criteria when choosing a hypothesis H to explain some data D:

1. How decisively does H surpass its alternatives?

2. How good is H by itself, independent of the alternatives?

3. How thorough was the search for alternatives?

4. What are the risks of being wrong and the benefits of being right?

5. How strong is the need to come to a conclusion at all?
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Of these, our abduction scheme uses the weights and costs to formalize criterion 2, and the
costs at least in part address criteria 4 and 5. But criteria 1 and 3 are not accommodated
at all. The fact that our abduction scheme does not take into account thc competing
possible interpretations is a clear shortcoming that needs to be corrected.

A theoretical account, such as the one we have sketched, can inform our intuitions, but
in practice we can only assign weights and costs by a rough, intuitive sense of semantic
contribution, importance, and so on, and refine them by successive approximation on a
representative sample of the corpus. But the theoretical account would at least give us a
clear view of what the approximations are approximating.

9 Conclusion

Interpretation in general may be viewed as abduction. When we look out the window
and see a tree waving back and forth, we normally assume the wind is blowing. There
may be other reasons for the tree’s motion; for example, someone below window level
might be shaking it. But most of the time the most economical explanation coherent
with the rest of what we know will be that the wind is blowing. This is an abductive
explanation. Moreover, in much the same way as we try to exploit the redundancy in
natural language discourse, we try to minimize our explanations for the situations we
encounter by identifying disparately presented entities with each other wherever possible.
If we see a branch of a tree occluded in the middle by a telephone pole, we assume that there
is indeed just one branch and not two branches twisting bizarrely behind the telephone
pole. If we hear a loud noise and the lights go out, we assume one event happened and
not two.

These observations make the abductive approach to discourse interpretation more ap-
pealing. Discourse interpretation is seen, as it ought to be seen, as just a special case of
interpretation. From the viewpoint of Section 6.3, to interpret a text is to prove abduc-
tively that it is coherent, where part of what coherence is is an explanation for why the
text would be true. Similarly, one could argue that faced with any scene or other situation,
we must prove abductively that it is a coherent situation, where part of what coherence
means is explaining why the situation exists.?!

Moreover, the particular abduction scheme we use, or rather the ultimate abduction
scheme of which our scheme is an initial version, has a number of other attractive proper-
ties. It gives us the expressive power of predicate logic. It allows the defeasible reasoning
of nonmonotonic logics. Its numeric evaluation method begins to give reasoning the “soft
corners” of neural nets. It provides a framework in which a number of traditionally diffi-
cult problems in pragmatics can be formulated elegantly in a uniform manner. Finally, it
gives us a framework in which many types of linguistic processing can be formalized in a
thoroughly integrated fashion.

2'When this viewpoint is combined with that of Section 6.6 of action as abduction, one begins to suspect
the brain is primarily a large and complex abduction machine.
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An Integrated Abductive Framework
for Discourse Interpretation

Jerry R. Hobbs
Artificial Intelligence Center
SRI International

Interpretation as Abduction. Abductive infer-
ence is inference to the best explanation. The process
of interpreting sentences in discourse can be viewed as
the process of providing the best explanation of why
the sentences would be true. In the TACITUS Project
at SRI, we have developed a scheme for abductive in-
ference that yields a significant simplification in the de-
scription of such interpretation processes and a signifi-
cant extension of the range of phenomena that can be
captured. It has been implemented in the TACITUS
System (Hobbs et al., 1088; Stickel, 1989) and has been
applied to several varieties of text. “"he framework sug-
gests a thoroughly integrated, nonmodular treatment of
syntax, semantics, and pragmatics, and this is the focus
of this paper. First, however, the use of abduction in
pragmatics alone will be described.

In the abductive framework, what the interpretation
of a sentence is can be described very concisely:

To interpret a sentence:

(1) Prove the logical form of the sentence,
together with the constraints that pred-
icates impose on their arguments,
allowing for coercions,
Merging redundancies where possible,
Making assumptions where necessary.

By the first line we mean “prove from the predicate
calculus axioms in the knowledge base, the logical form
that has been produced by syntactic analysis and se-
mantic translation of the sentence.”

In a discourse situation, the speaker and hearer both
have their sets of private beliefs, and there is a large
overlapping set of mutual beliefs. An utterance stands
with one foot in mutual belief and one foot in the
speaker’s private beliefs. It is a bid to extend the area
of mutual belief to include some private beliefs of the

speaker’s. It is anchored referentially in mutual be-
lief, and when we prove the logical form and the con-
straints, we are recognizing this referential anchor. This
is the given information, the definite, the presupposed
Where it is necessary to make assumptions, the infor-
mation comes from the speaker’s private beliefs, and
hence is the new information, the indefinite, the as-
serted. Merging redundancies is a way of getting a
minimal, and hence a best, interpretation.

An Example. This characterization, elegant though
it may be, would be of no interest if it did not lead to
the solution of the discourse problems we need to have
solved. A brief example will illustrate that it indeed
does.

(2) The Boston office called.

This example illustrates three problems in “local prag-
matics”, the reference problem (What does “the Boston
office” refer to?), the compound nominal interpretation
problem (What is the implicit relation between Boston
and the office?), and the metonymy problem (How can
we coerce from the office to the person at the office who
did the calling?).

Let us put these problems aside, and interpret the
sentence according to characterization (1). The logical
form is something like

(3) (3e,z,0,b)call'(e,z) A person(z) A rel(z,0)
Aof fice(o) A nn(b,0) A Boston(b)

That is, there is a calling event e by a person z related

somehow (possibly by identity) to the explicit subject

of the sentence o, which is an office and bears some

unspecified relation nn to b which is Boston.

Suppose our knowledge base consists of the following
facts: We know that there is a person John who works
ior U which is an office in Boston B.

(4) person(J), work-for(J,0), of fice(0),
in(0, B), Boston(B)
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Suppose we also know that work-for is a possible co-
ercion relation,

(5) (Yz,y)work-for(z,y) D rel(z,y)
and that in is a possible implicit relation in compound
nominals,

(6) (Yy,2)in(y, 2) D nn(=,y)
Then the proof of all but the first conjunct of (3) is
straightforward. We thus assume (3e)call’(e, J), and it
constitutes the new information.

Notice now that all of our local pragmatics problems
have been solved. “The Boston office” has been resolved
to O. The implicit relation between Boston and the
office has been determined to be the in relation. “The
Boston office” has been coerced into “John, who works
for the Boston office.”

This is of course a simple example. More complex
examples and arguments are given in Hobbs et al., 1990.
A more detailed description of the method of abductive
inference, particularly the system of weights and costs
for choosing among possible interpretations, is given in
that paper and in Stickel, 1989.

The Integrated Framework. The idea of inter-
pretation as abducticn can be combined with the older
idea of parsing as deduction (Kowalski, 1980, pp. 52-53;
Pereira and Warren, 1983). Consider a grammar writ-
ten in Prolog style just big enough to handle sentence

(2).

(1) (Vi,5,k)np(i, ) A v(G, k) D s(i, k)

(8) (Vi j, k,{)det(i,5) A n(j,k) A n(k,1) D np(i,l)

That is, if we have a noun phrase from “inter-word

point” i to point j and a verb from j to k, then we

have a sentence from i to k, and similarly for rule (8).
We can integrate this with our abductive framework

by moving the various pieces of expression (3) into these
rules for syntax, as follows:

(9) (Vi j,k,e,2,y,p)np(i,5,9) A v(j, k,p) A p'(e, 2)
AReq(p,z) A rel(z,y) D s(i, k,e¢)

That is, if we have a noun phrase from i to j referring to
y and a verb from j to k denoting predicate p, if there
is an eventuality e which is the condition of p being
true of some entity z (this corresponds to cail'(e, z) in
(3)), if z satisfies the selectional requirement p imposes
on its argument (this corresponds to person(z)), and
if z is somehow related to, or coercible from, y, then
there is an inierprefable sentence from i to k describing
eventuality e.

(10) (Vi,,,,Ddet(s,j, the) A n(j, k,w1) A n(k,1,w2)
Aw(z) A wa(y) A nn(z,y) D np(i,l,y)

il

That is, if there is the determiner “the” from i to j, a
noun from j to k denoting predicate w,, and another
noun from & to ! denoting predicate wy, if there is a
z that wy is true of and a y that ws is true of, and if
there is an nn relation between z and y, then there is
an inierpretable noun phrase from i to ! denoting y.

These rules incorporate the syntax in the literals like
v(j, k,p), the pragmatics in the literals like p’(e, z), and
the compositional semantics in the way the pragmatics
literals are constructed out of the information provided
by the syntax literals.

To parse with a grammar in the Prolog style, we prove
s(0, N) where N is the number of words in the sentence.
To parse and interpret in the integrated framework, we
prove (3e)s(0, N, e).

Implementations of different orders of interpretation,
or different sorts of interaction among syntax, composi-
tional semantics, and local pragmatics, can then be seen
as different orders of search for a proof of (3 ¢)s(0, N, ¢).
In a syntax-first order of interpretation, one would try
first to prove all the syntax literals, such as np(i, j,y),
before any of the “local pragmatic” literals, such as
p'(e,z). Verb-driven interpretation would first try to
prove v(j,k,p) and would then use the information
in the requirements associated with the verb to drive
the search for the arguments of the verb, by deriving
Req(p', z) before back-chaining on np(i.j,y). But more
fluid orders of interpretation are clearly possible. This
formulation allows one to prove those things first which
are easiest to prove, and therefore allows one to exploit
the fact that t! strongest clues to the meaning of a
sentence can c. 2 from a variety of sources—its syn-
tax, the semantics of its main verb, the reference of its
noun phrases, and so on. The framework is, moreover,
suggestive of how processing could occur in parallel, in-
sofar as parallel Prolog is possible.
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Abstract

By determining what added assumptions would suffice to make the logical form of a sen-
tence in natural language provable, abductive inference can be used in the interpretation
of sentences to determine what information should be added to the listener’s knowledge,
i.e., what he should learn from the sentence. This is a comparatively new application of
mechanized abduction. A new form of abduction—least specific abduction—is proposed as
being more appropriate to the task of interpreting natural language than the forms that
have been used in the traditional diagnostic and design-synthesis applications of abduction.
The assignment of numerical costs to axioms and assumable literals permits specification
of preferences on different abductive explanations. A new Prolog-like inference system that
computes abductive explanations and their costs is—éiven. To facilitate the computation of
minimum-cost explanations, the inference system, unlike others such as Prolog, is designed

to avoid the repeated use of the same instance of an axiom or assumption.

1 Introduction

We introduce a Prolog-like inference system for computing minimum-cost abductive ex-
planations. This work is being applied to the task of natural-language interpretation, but
other applications abound. Abductive inference is inference to the best explanation. The
process of interpreting sentences in discourse can be viewed as the process of generating
the best explanation as to why a sentence is true, given what is already known [8)—that is,
determining what information must be added t;) the listener’s knowledge (what assumptions
must be made) for him to know the sentence to be true.

To appreciate the value of an abductive inference system over and above that of a merely
deductive inference system, consider a Prolog specification of graduation requirements (e.g.,

to graduate with a computer science degree, one must fulfill the computer science, mathe-

! Alternative abductive approaches to natural-language interpretation have been proposed by Charniak {3]

and Norvig {10].
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matics, and engineering requirements; the computer science requirements can be satisfied

by taking certain courses, etc.) as an example of a deductive-database application [9):

csReq <- basicCS, mathReq, advancedCS, engReq, natSciReq.
engReq <- digSys.

natSciReq <- physicsI, physicslI.

natSciReq <- cheml, chemII.

natSciReq <- bioI, bioIll.

After adding facts about which courses a student has taken, such a database can be
queried to ascertain whether the student meets the requirements for graduation. Evaluating
csReq in Prolog will result in a yes or no answer. However, standard Prolog deduction
cannot determine what more must be done to meet the requirements if they have not
already been fulfilled; that would require analysis to find out why the deduction of csReq
failed.

This sort of task can be accomplished by abductive reasoning. Given what is known
in regard to which courses have been taken, what assumptions could be made to render

provable the statement that all graduation requirements have been met?

2 Three Abduction Schemes

We will consider here the abductive explanation of conjunctions of positive literals from
Horn clause knowledge bases. An explanation will consist of a substitution for variables in
the conjunction and a set of literals to be assumed. In short, we are developing an-abductive
extension of pure Prolog.

The general approach can-be characterized as follows: when trying to explain why Q(a)
is true, hypothesize P(a) if P(z) D Q(z) is known.

The requirement that assumptions be literals does not permit us to explain Q(a) when
P(a) is known by assuming P(z) D Q(z), or even P(a) D @(a). We do not regard this as
a limitation in tasks like diagnosis and natural-language interpretation. Some other tasks,
such as scientific-theory formation, could be cast in terms of abductive explanation when

the assumptions take these-more general forms.
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We want to include the possibility that Q(a) can be explained by assuming Q(a). As
later examples will show, this is vital in the natural-language interpretation task.

Consider again the example of the deductive database for graduation requirements. All
the possible ways of fulfilling the requirements can be obtained by backward chaining from
csReq:

<- csRegq.

<- basicCS, mathReq, advancedCS, engReq, natSciReq.

<- basicCS, mathReq, advancedCS, engReq, physicsI, physicsII.

<~ basicCS, mathReq, advancedCS, engReq, cheml, chemll.

<~ basicCS, mathReq, advancedCS, engReq, bioI, bioIIl.

<- basicCS, mathReq, advancedCS, digSys, natSciReq.

<- basicCS, mathReq, advancedCS, digSys, physicsI, physicsII.

<- basicCS, mathReq, advancedCS, digSys, chemI, chemII.
<- basicCS, mathReq, advancedCS, digSys, bioI, bioll.

Eliminating from any such clause those requirements that have been met results in 2 list
that, if met, would result in fulfilling the graduation requirements. Different clauses can be
more or less specific about how the remaining requirements must be satisfied. If the student
lacks only Physics II to graduate, the statements that he can fulfill the requirements for
graduation by satisfying physicsII, natSciReq, or (rather uninformatively) csReq can all
‘be derived by this backward-chaining scheme.

The above clauses are all possible abductive explanations for the graduation require-
ments’ being met.

In general, if the formula @1 A -+ A @y, is to be explained or abductively proved, the
substitution [of values for variables] § and the assumptions Py, ..., P, would constitute
one possible explanation if (Py A+ A Pp) D (Q10 A +-- A Qr0) is a consequence of the
knowledge base.

If, in the foregoing example, the student lacks only Physics II to graduate, assuming
pliysicsII then makes csReq provable.

If the explanation contains variables (for example, if P(z) is an assumption used to

explain Q(z)), the explanation should be interpreted as neither to assume P(z) for all z




(i.e., assume Yz P(2)) nor to assume P(z) for some unspecified z (i.e., assume 3z P(z)), but
rather that, for any variable-free instance t of z, if P(t) is assumed, then Q(2) follows.

It is a general requirement that the conjunction of all the assumptions made be con-
sistent with the knowledge base. (In the natural-language interpretation task, the validity
of rejecting assumptions that are inconsistent with the knowledge base presupposes that
the knowledge base is correct and that the speaker of the sentence is neither mistaken nor
lying.)

Prolog-style backward chaining, with an added factoring operation and without the
literal ordering restriction (so that any, not just the leftmost, literal of a clause can be
resolved on), is capable of generating all possible explanations that are consistent with the
knowledge base. That is, every possible explanation consistent with the knowledge base is
subsumed by an explanation that is generable by backward chaining and factoring.

It would be desirable if the procedure were guaranteed to generate no explanations
that are inconsistent with the knowledge base. However, this is impossible; consistency
of explanations with the knowledge base must be checked outside the abductive-reasoning
inference system. (Not all inconsistent explanations aregenerated: the system can generate
only those explanations that assume literals that can be reached from the initial formula by
backward chaining.) Determining consistency is undecidable in general, though decidable
subcases do exist, and many explanations can be rejected quickly for being inconsistent with
the knowledge base. For example, assumptions can be readily rejected if they violate sort or
ordering restrictions, e.g., assuming woman(John) can be disallowedif man(John) is known
or already assumed, and assuming b < a can be-disallowed if ¢ < b is known or already
assumed. Sort restrictions are particularly effective in eliminating inconsistent explanations
in natural-language interpretation. We shall not discuss the consistency requirement further;
what we are primarily concerned with here is the process of generating possible explanations,
in order of preference according to our cost criteria, not with the extra task of verifying
their consistency with the knowledge base.

Obviouslwy, any clause derived by backward chaining and factoring can . » i list




of assumptions to prove the correspondingly instantiated original clause abductively. This
can result in an overwhelming number of possible explanations. Various abductive schemes
have been developed to limit the number of acceptable explanations.

What we shall call most specific abduction has been used particularly in diagnostic
tasks. In explaining symptoms in a diagnostic task, the objective is-to identify causes that,
if assumed to exist, would result in the symptoms. The most specific causes are usually
sought, since identifying less specific causes may not be as useful.

What we shall call predicate specific abduction has been used particularly in planning
and design-synthesis tasks. In generating a plan or design by specifying its objectives and
ascertaining what assumptions must be made to make the objectives provable, acceptable
assumptions are often expressed in terms of a prespecified set of predicates. In planning,
for example, these might represent the set of executable actions.

‘We consider what we will call least specific abduction to be especially well suited to
natural-language-interpretation tasks. Given that abductive reasoning has been used mostly
for diagnosis and planning, and that least specific abduction tends to produce what would
be considered frivolous results for such tasks, least specific abduction has been little studied.
Least specific.abduction is-used-in natural-language interpretation to-seek the least specific

assumptions that explain a sentence. More specific explanations would unnecessarily and

often incorrectly make excessively- detailed-assumptions.

2.1 Most Specific Abduction

Resolution-based systems for abductive reasoning applied to diagnostic tasks [11,4,5] have
favored most specific explanations by stipulating that only pure literals (those that can-
not -be resolved with any clause in the knowledge base), which are reached by backward-

chaining deduction from the formula to be explained, be adoptable as assumptions. For

causal-reasoning tasks, this eliminates frivolous-and unhelpful explanations for “the watch-

1is broken” such-as simply noting that the watch is-broken, as opposed to, perhaps, the main-

spring’s being broken. The explanations can be too specific. In diagnosing the failure of a
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computer system, most specific abduction could never merely report the fails re of a board if
the knowledge base has enough information for the board’s failure to be explained—possibly
in many alternative, inconsistent ways—Dby the failure of its components.

Besides sometimes providing overly specific explanations (discussed further in Section 2.3),
most specific abduction is incomplete—it does not compute all the reasonable most specific
explanations.

Consider explaining instances of the formula P(z) A @(z) with a knowledge base that
consists of P(a) and Q(b). Most specific abduction’s backward chaining to sets of pure
literals makes P(c) A Q(c) explainable by assuming P(c) and Q(c) (both literals are pure),
but P(z) A Q(z) is explainable only by assuming P(b) or Q(a), since P(z) and Q(z) are
not pure. The explanation that assumes P(c) and @{c), or any value of z other than a or
b, to explain P(z) A Q(z) will not be found.

Thus, most specific abduction does not “lift” properly from the case of ground (variable-
free) formulas to the general case (this would not be a problem if we restricted ourselves to
propositional-calculus formulas). A solution would be to require that all generalizations of
any pure literal also be pure. This too is often impractical, since purity of P(c) in the above
example would require purity of P(z), which is inconsistent with the presence of P(a) in
the knowledge base.

A sperinl case of the requirement that generalizations of pure literals be. pure would be
to have-a set of predicates that do not occur positively (i.e., they appear only in negated
literals) in the knowledge base. But the case of a set of assumable predicate symbols is
handled-more generally, i.e,, without the purity requirement, by predicate specific abduction
(see Section 2.2). This-is consistent with much of the practice in diagnostic tasks, where

causal-explanations in terms of particular predicates, such as Ab, are often sought.

2.2 Predi‘céteSpeciﬁc Abduction

Resolution-based-systems for abductive reasoning applied tc design-synthesis and planning

tasks [6] have favored explanations that are expressed in terms of a prespecified subset of

R IS




the predicates, namely, the assumable predicates.
In explaining P(7)AQ(2) with a knowledge base that consists of P(a) and (;(b), predicate
specific abduction would offer the following explanations: (1) Q(b), if P is assumable,

(2) P(a), if @ is assumable, along with (3) P(z) A Q(z), if both are assumable.

2.3 Least Specific Abduction

The criterion for “best explanation” that must be applied in natural-language interpretation
differs greatly from most specific abduction for diagnostic tasks. To interpret the sentence
“the watch is broken,” the conclusion will likely be that we should add to our knowledge
the information that the watch (i.e., the one currently being discussed) is broken. The
explanation that would be frivolous and unhelpful in a diagnostic task is just right for
sentence interpretation. A more specific causal explanation, such as the mainspring’s being
broken, would be gratuitous.

Associating the assumability of a literal with its purity as most specific abduction does
yields rot only causally specific explanations, but also taxonomically specific explanations.
With axioms like mercury(z) D liguid(z), water(z) D liquid(z), explaining liquid(a),
when liquid(e) cannot be proved, would require the assumption that ¢ was mercury, or
that it was water, and so on. Not only are these explanations more specific than the only
fully warranted one that a is simply a liquid, but none may be correct, for example, if a
is actually milk, but milk is not mentioned as a possible liquid. Most specific abduction
thus assumes completeness of the knowledge base with respect to causes, subtypes, and so
'on. The purity requirement may make it impossible to make any assumption at all. Many
reasonable axiom sets contain axioms that make literals, which we would sometimes like to
assume, impure and unassumable. For example, in the presence of parent(x,y) D child(y,z)
and child(z,y) D parent(y,z), neither child(a,b) nor parent(b,a) could be assumed, since
neither literal is pure,

We note that assuming any literals other than those in the original formula generally

results in more specific (and thus more likely to be wrong and riskier) assumptions. When




explaining R with P D R (or P AQ D R) in the knowledge base, either R or P (or P and
@) can be assumed to explain R. Assumption of R, the consequent of an implication, in
preference to antecedent P (or P and @), results in the fewest consequences. Assuming the
antecedent may result in more consequences, e.g., if other rules like P D § are present.
Predicate specific abduction is not ideal for natural-language interpretation either, since
there is no easy division of predicates into assumable and nonassumable ones so that those
assumptions that can be made will be reasonably restricted. Most predicates must be
assumable in some circumstances, e.g., when certain sentences are being interpreted, but in

many other cases should not be assumed.

Least specific abduction, wherein a subset of the literals asked to be proven must be
assumed, comes closer to our ideal of the right method of explanation for natural-language
interpretation. Under this model, a sentence is translated into a logical form that contains
literals whose predicates stand for properties and relationships and whose variable and 1
constant arguments refer to entities specified or implied by the sentence. The logical-form-
is then proved abductively, with some or all of the variable values filled in from the knowledge
base and unprovable literals of the logical form assumed.

The motivation for this is the claim that what we should learn from a sentence is often
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near the surface and can attained by assuming literals in the sentence’s logical form. For

example, when interpreting
The car is red.
with logical form "

car(z) A red(z),?

LTy S

we would typically want to ascertain from the discourse which car z 1s being discussed and

learn by abductive assumption that it is red and not something more specific, such as the

2 A logical form that insisted upon proving car(z) and assuming red(z) might have been used instead. We
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-prefer this more neutral logical form to allow for alternative interpretations. The preferred. interpretation is :

determined by the assignment of costs to axioms and assumable literals.




fact that it is carmine or belongs to a fire chief (whose cars, according to the knowledge

base, might always be red).

3 Assumption Costs

A key issue in abductive reasoning is picking the best explanation. Which one is indeed
best is so subjective and task-dependent that there is no hope of devising an algorithm
that will always compute [only] the best explanation. Nevertheless, there are often so many
abductive explanations that it is necessary to have some means of eliminating most of
them. We attach numerical assumption costs to assumable literals and compute minimum-
cost abductive explanations in an effort to inﬂuence‘ the abductive reasoning system into
favoring the intended-explanations.

We regard the assignment of numerical costs as a-part of programming the explanation
task. The values used may be determined by subjective estimates of the likelihood of various
interpretations or perhaps they may be learned through exposure to a large set of examples.

In selecting the best abductive explanation, we oftén prefer, when given the choice, that

certain literals be assumed rather than others. For example, when the-sentence
The car is red.

with-the logical form
car(z) A red(z)

is'being interpreted, the knowledge base will likely contain both cars and things that are red.
However, the form of the sentence suggests that red(z) is new information to be learned
and that car(z) should be proved from the knowledge base because it -is derived from a
definite reference, i.e., a specific car is presumably being discussed. Thus, an explanation
that assumes red(a) where car(a) is provable should be preferred to an explanation that
assumes car(b) where red(b) is provable. A way to express this preference is through

numerical assumption costs associated with the assumable literals: car(z) could have cost

10, and red(z) cost 1.




The cost of an abductive explanation could then just be the sum of the assumption
costs of all the literals that had to be assumed: car(a) A red(a) would be the preferred
explanation, with cost 1, and car(b) A red(b) would be another explanation, with higher
cost 10.

However, if only the cost of assuming literals is counted in the cost of an explanation,
there is in general no effective procedure for computing a minimum-cost explanation. For
example, if we are to explain P, where P is assumable with cost 10, then assuming P
produces an explanation with cost 10, but proving P would result in a better explanation
with cost 0. Since provability of first-order formulas is undecidable in general, it may be
impossible to determine whether the cost 10 explanation is best.

The solution to this difficulty is that the cost of proving literals, as well as the cost
of assuming them, must be included in the cost of an explanation. An explanation that
assumes P with cost 10 would be preferred to an explanation that proves P with cost 50
(e.g., in a proof of 50 steps) but would be rejected-infavor of an explanation that proves P
with cost less than 10.

Although treating explanation costs as composed only of assumption costs is conceptu-
ally elegant (why should we distinguish explanations that differ in the size of their proof,
when only their provability should matter?), there are substantial advantages gained by tak-
ing into account proof costs as well as assumption costs, in addition to the crucial benefit
of making the search for a minimum-cost explanation theoretically possible.

If costs are associated with the axioms in the knowledge base as well as with assumable
literals, these costs can be used to encode information on the likely relevance of the fact or
rule to the situation in which the sentence is being interpreted.

Axiom costs can be adjusted to reflect the salience of certain facts. If a is a car mentioned
in the previous sentence, the cost of the axiom car(a) could have been adjusted downward
so that the explanation of car(z) A red(z) that assumes red(a) would be preferred to one
that assumes red(c) for some other car ¢ in-the knowledge base.

Indeed, the explanation that assumes red(a) should probably be preferred to any expla-
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nation that proves both car(c) and red(c) (i.e., there is a red car in the knowledge base—this
would be a “perfect” zero-cost explanation if only assumption costs were used), since the
recent mention of a makes it likely that a is the subject of the sentence and that the purpose
of the sentence is to convey the new information that a car is red—interpreting the referent
of “the car” as a car that is already known to be red results in no new information being
learned.

We have some reservations about choosing explanations on the basis of numerical costs.
Nonnumerical specification of preferences is an important research topic. Nevertheless, we
have found these numerical costs to be quite practical. Numerical costs offer an easy way
of specifying that one literal is to be assumed rather than another. When many alterna-
tive explanations are possible, the summing of numerical costs in each explanation and the
adopting of an explanation with minimum total cost provide a mechanism for trading off
the costs of one proof and set of assumptions against the costs of another. If this method
of comparing explanations is too simple, other means may be too complex to be realizable,
since they would require preference choices among a wide variety of sets of assumptions and
prools. We provide-a procedure for computing a minimum-cost explanation by enumerating
possible partial explanations in order of increasing cost. Even a perfect scheme for specify-
ing preferences among alternative explapations may not lead to an effective procedure for
generating a most preferred one, as there may be no way of cutting off the search for an
explanation with the certainty that the best explanation exists among those so far discov-
ered. Finally, any scheme will be imperfect: people may disagree as to the best explanation

of some data and, moreover, sometimes do misinterpret sentences.

4 Minimum-Cost Proofs

We now present the inference system for computing abductive explanations. This method
applies to both predicate specific and least specific abduction. We have not tried to incor-
porate most specific abduction into this scheme because of its incompleteness, its incompat-

ibility with ordering restrictions, and its unsuitability for natural-language interpretation.
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In predicate specific abduction, the assumability of a literal is determined by its predicate
symbol and assumption costs are specified on a predicate-by-predicate basis. In least specific
abduction, only literals in the formula to be explained are assumable, and their assumption
costs are directly associated with them.

The cost of a proof is usually taken to be a measure on the syntactic form of the proof,
e.g., the number of steps in the proof. A more abstract characterization of cost is called for.
We want to assign different costs to different inferences by associating costs with individual
axioms; we also want to have a cost measure that is not so dependent on the syntactic form
of the proof.

We assign to each axiom A a cost cost(A) that is greater than zero. Likewise we assign
a cost cost(A) greater than zero to each assumable literal A. When looked at abstractly,
a proof is a demonstration that the goal follows from a set S -of substitution instances of
the axioms, together with, in the case of abductive proofs, a set H of substitution instances
of assumable literals that are assumed in the proof. We want to count the cost of each
separate instance of an axiom or assumption only once instead-of the number of times it
may appear in the syntactic form of the proof. Thus, a natural measure of the cost of the

proof is

Z cost(A) + Z cost(A)

AceS AoccH
Consider the example of explaining Q(z) A R(z) A S(z) with a knowledge base that

includes P(a), P(z) D Q(z), and Q(z) A R(z) D S(z) and with-R being assumable by using
Prolog plus an inference rule for assuming literals:

1. <~ Q(x), R(x), s(x).

2. <= P(x), R(x), S(x). % resolve 1 with Q(x) <~ P(x)

3. <~ R(a), S(a). % resolve 2 with P(a)

4, <- S(a). % assume R(a) in 3

5. <= §(a), R(a). % resolve 4 with S(x) <- Q(x), R(x)
6. <- P(a), R(a). % resolve 5 with Q(x) <- P(x)

7. <~ R(a) % resolve 6 with P(a)

8. <~ true % assume R(a) in 7

Q(z) A R(z) A S(z) has been explained with z having the value a under the assumption
that R(a) is true.

12
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The cost of the proof is the sum of the costs of the axiom instances P(a), P(«) D Q(a),
and @(a) A R(a) D S(a), plus the cost of assuming R(a). The costs of using P(a) and
P(z) D Q(z) and assuming R(a) are not counted twice even though they were used twice,
since the same instances were used or assumed. If we had had occasion to use P(z) O Q(z)
with b as well as « substituted for z, then the cost of P(z) A Q(z) would have been added
in twice.

In general, the cost of a nroof can be determined by extracting the sets of axiom instances
S and assumptions I from the proof tree and performing the above computation. However,
" it is an enormous convenience if there always exists a simple proof tree such that each
separate instance of an axiom or assumption actually occurs only once in the proof tree.
That way, as the inferences are performed, costs can simply be added to compute the
cost of the current partial proof. (Even if the same instance of an axiom or assumption
happens to be used and counted twice, a different, cheaper derivation would-use and count
it only once.) Partial proofs can be enumerated in order of increasing cost by employing
breadth-first or iterative-deepening search methods and minimum-cost explanations can be
discovered effectively. Iterative-deepending search is compatible with maintaining Prolog-
style implementation and: performance [14,15).

We shall describe our inference system as an extension of pure Prolog. Prolog, though
complete for Horn sets of clauses, lacks this very desirable property of always being able to
find a simple proof tree.

Prolog’s inference system—ordered input resolution without factoring—would have to
both eliminate the ordering restriction and add the factoring operation to remain a form
of resolution and be able to prove «— @, R from @ — P, R « P, and P without using P
twice. Elimination of the ordering restriction is potentially very expensive. For example,
there are n! proofs of — @1,...,0Q, from the axioms @,,...,Q, when unordered input
resolution is used, but only one with ordered input resolution. (Most specific abduction
performs unordered input resolution [11,4,5).)

We present a resolution-like inference system, an extension of pure Prolog, that preserves
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the ordering restriction and does not require repeated use of the same instances of axioms.
Unlike Prolog, literals in goals can be marked with information that dictates how the literals
are to be treated by the inference system (in Prolog, all literals in goals are treated alike

and must be proved). A literal can be marked as one of the following;:

proved The literal has been proved or is in the process of being proved.®
assumed The literal is being assumed.

unsolved The literal is neither proved nor assumed.

The initial éoa,l clause « @;,...,@Q, in a deduction consists of literals @ that are
either unsolved or assumed. If any assumed literals are present, they must precede the
unsolved literals. Unsolved literals must either be proved from the knowledge base, plus
any assumptions that appear in the initial goal clause or are made during the proof, or, in
the case of assumable literals, be directly assumed. Literals that are proved or assumed are
retained in all successor goal clauses in the deduction and are used to eliminate matching
goals. The final goal clause « Py,..., Py, in a-deduction must consist entirely-of proved or

assumed literals Py.

4.1 Inferenre Rules

Suppose the current goal is — @1,...,Q@, and that Q; is the leftmost unsolved 1::eral. Then
the following inferences are possible.

Resolution with a fact. Let @ be a fact with its varia! les renamed, if necessary, so
that it has no variables in common with the goal « @1,...,Q,. Then, if Q; émd«,Q are

unifiable with most general unifier o, the goal

— Q10,...,@n0

31n thic inference system, » literal marked as proved wjll have brer fully proved when no'literal to its left

remains unsolved.




can be derived, where ;o is marked as proved.? The cost of the resulting goal is the cost
of the original goal plus the cost of the axiom Q.

Resolution with a rule. Let @ « Pi,..., P, be a rule with its variables renamed, if
necessary, so that it has no variables in common with the goal «~ @q,...,@y. Then, if Q;

and @ are unifiable with most general unifier o, the goal

""'Qlaa"°aQi—10)P1(71°--,Pmo)Qi07'°‘aQna

can be derived. where ;o is marked as proved and each Pyo is unsolved.® The cost of the
resulting goal is the cost of the original goal plus the cost of the axiom @ « P,..., Pp.

Making an assumption. If Q; is assumable in the goal — Qy,...,Qy, then

{_Qh‘":Qn

can be derived, where Q; is assumed.® The cost of the resulting goal 1s the cost of the
original goal plus the cost of assuming Q;.
Factoring with a proved or assumed literal. If Q; and Q; (j < )7 are unifiable

with most general unifier o, the goal

~ ho,.. -$Qi—'1§7a Qi+1‘7a vy @no

can be derived. The cost of the resulting goal is the same as the cost of the original goal. In

addition, only when least specific abduction is done, @; can be eliminated by factoring with

4Each literal Qx or Qxo in a goal resulting from one of these inference rules is proved or assumed precisely

when Qj in the parent goal is, unless it is stated otherwise.
®Note that the resolution with a fact and resolution with a rule operations differ from Prolog’s

principally in their retention of Qio (marked as proved) in the result.
6The same result, except for Q;’s being assumed,-can be derived by the resclution with a fact operation

if assumable literals are asserted as axioms. The final proof could be examined to distinguish between proved
and assumed literals. Althcugh using a fact and -making an assumption can be merged operationally in this

way, we prefer to regard them as separate operations. An'important distinction between facts and assumable

literals is that facts are consistent with the [assumed-to-be-consistent] knowledge base; assumptions made in-

an abductive explanation should be checked for consistency with the knowledge base before being accepted.

7Q; must have been proved or assumed, since it precedes Q;.
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Q;, where (j > i) and Q; is assumable; Q;o is assumed in the result. If Q; was already
assumed in the original goal, the cost of the resulting goal is the same as the cost of the
original one; otherwise it is the cost of the original goal plus the cost of assuming @Q;.
Consider again the example of explaining @(z) A R(z) A §(z) with R assumable from a
knowledge base that includes P(a), P(z) D Q(z), and Q(z) A R(z) D S(x). Proved literals

are marked by brackets [}, assumed literals by braces'{}.

1. <= Q(x), R(x), S(x).
2. <~ P(x), [Q(x)], R(x), S(x). % resolve 1 with Q(x) <- P(x)
2. <~ [P(a)], [Q(a)], R(a), sS(a). % resolve 2 with P(=)
4. <~ [P(a)], [QCa)], {R(a)}, S(a). " Y% assume R(a) in 3
5. <~ [P(a)], [Q(a)], {R(a)}, Q(a), R(a), [s(a)].
% resolve 4 with S(x) <~ Q(x), R(x)
6. <- [P(2)], [Q(a)], {R(a)}, R(a), [S(a)]. % factor §
7. <= [P(a)], [Q(a)], {Rr(a)}, [s(a)]. % factor 6

The abductive proof is complete when all literals are either proved or assumed. Each
axiom instance and assumption was used or made only once in the proof. The cost of the
proof can be determined quickly by adding the costs of the axioms or assumed literals in
each step of the proof.

If no literals are assumed, the procedure is a disguised form of Shostak’s graph construc-
tion (GC) procedure {12] restricted to Horn clauses, where proved literals play the role of
Shostak’s C-literals. It also resembles Finger’s ordered residue procedure [6], except that
the latter retains-assumed literals (rotating them to the end of the clause) but not proved
literals. Thus, it combines the GC procedure’s ability to compute simple proof trees for
Horn clauses with the ordered residue procedure’s ability to make assumptions in abductive

proofs.

5 Future Directions

Many extensions of this work are possible. The most important to us right now are a-more

flexible assignment of assumption costs and a procedure for dealing with non-Horn clause

formulas.




5.1 Assumption Costs

The designation of which literals are assumable and the assignment of assumption costs are
more rigid than we would like.

In predicate specific abduction, any literal with an assumable predicate is assumable,
‘but its assumption cost is fixed. For example, in interpreting the sentence “The man hit
another man,” we would want to prove abductively a logical form such as man(x)Aman(y)A
hit(z,y) Ax # y. Predicate specific abduction would require that man(z) and man(y) be
assumable with equal cost; the definite reference for the first man suggests that man(y)
should be assumed more easily. ‘

In least specific abduction, only literals in the initial formula can be assumed. Although
this yields correct results in many cases, it is clearly’ sometimes necessary to make deeper
assumptions that imply the initial formula. When interpreting a piece of text, which includes

references to fish and pets, with logical form
fish(z) Apet(y)A---

we are forced to assume fish(z) and pet(y) if no fish or pets are in the knowledge base. But
we would really like to consider the possibility that z and y refer to the same entity, i.e., a
pet-fish, which we could have done, were it the case (according to our knowledge base) that
allfish are pets or all pets are fish, by assuming one and using it to prove the other. What

is needed are axioms like
fish(z) A fp(z) D pet(z) ard pet(z) Apf(z) D fish(z)

where fp and pf are predicatcs expressing the extra requirements for a fish to be a pet
and-a pet to be a fish. With the former axiom, fish(z) A pet(y) A--- can be explained by
assuming fish(z) and pet(y), as before, or by assuming fish(z) and fp(>), with pet(z) a
consequence.

‘Such reasoning requires that literals other than those in the original formula be assum-

able and that there must be a-way of assigning assusption costs to them.
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The method we have adopted, which has not yet been fully analyzed and is described
more extensively elsewhere [8}, is to allow assumability and assumption costs to be propa-
gated from consequent literals to antecedent literals in implications.

Thus, the implication
P AP D Q

states that P, and P, imply @, but also that, if @ is assumable with cost ¢, then P
is assumable with cost w;c and P, is assmmable with cost wac in the result of backward
chaining from @ by the implication. If w; + w2 < 1, most specific abduction is favored,
since the cost of assuming P, and P, is less than the cost of assuming Q. If wy + wy > 1,
least specific abduction is favored: @ will be assumed in preference to P; and P,. But,
depending on the weights, P; might be ass:umed in preference to @ if P; is provable.
Factoring can also reduce the cost of assuming antecedent literals. When is @ A R is

explained from

PAAP,DQ
PAP3DR

the cost of assuming Py, P2, 2ad P5 may be less than the cost of assuming @ and- R, even

though P, and P, cost more than @, and P, and [3 cost more than R.

5.2 Non-Horn Clause Proofs

‘Computi,, g minimum-cost proofs frem non-Hura sets of axioms is more difficult and would
take us farther from Prolog-like inference systems. A mutually resolving set of clauses isa
set of clauses such that each clause can be resoived with every other. Shostak [13] proved
that mutually resolving sets of clauses (having no tautclogies) with no single atom occurring
in every clause do noi have simple proof trees. This result is true of the GC precedure-as
wel] as of resoluutor. 50, 2ithough we were able to use the-GC procedure to compute simple

proof trees for sets of Horn claugss, this cannot b dene for nen-Hern-sats.
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For non-Horn clause proofs, an assumption mechanism can be added to a resolution-
based inference system that is complete for non-Horn clauses (such as the GC procedure or
the model elimination procedure that is implemented in PTTP [14]), with more complicated
rules for counting costs to compensate for the absence of simple proof trees.

Alternatively, an assumption mechanism can be added to the matings or connection
method [1,2). These proof procedures do not require multiple occurrences of the same
instances of axioms. This approach would reduce requirements on the syntactic form of
the axioms (e.g., the need for clauses) so that a cost could be associated with an arbitrary

axiom formula instead of a clause.

6 Conclusion

We have formulated part of the natural-language-interpretation task as abductive inference.
The process of interpreting sentences in discourse can be-viewed as the abductive inference
of what assumptions must be made for the listener to know that the sentence is true.
The forms of abduction suggested for diagnosis, and for design synthesis and i)lanning,
are generally unsuitable for natural-language interpretation. We suggest that least specific
abduction, in which only literals in the logical form can be assumed, is especially useful for
natural-language interpretation.

Numerical costs can be assigned to-axioms and assumable literals so that the intended
interpretation of a sentence will hopefully be obtained by computing vhe minimum-cost
abductive explanation of the sentence’s logical form. Axioms can be assigned different
costs to reflect their relevance to the sentence. Different literals in the logical form can be
assigned different assumption costs according to the form of the sentence, with literals from
indefinite references being more readily assumable than those from definite references.

We presented a Prolog-like inference system that computes abductive explanations by
means of either predicate specific or-least specific abduction. The inference system is de-
signed to compute the cost of an explanation-correctly, so that multiple occurrences of the

same instance of an axiom or assumption are not charged for more than once.
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We suggested, but have not yet fully developed, an approach that extends least specific
abduction to allow assumability and assumption costs to be propagated from consequent lit-
erals to antecedent literals in implications. This is intended for cases in which our preferred
method of least specific abduction is unable to produce the intended interpretation.

Most of the ideas presented here have been implemented in the TACITUS project at

SRI [7,8].
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Abstract

By determining those added assumptions sufficient to make the logical form of a natural- ;
language sentence provable, abductive inference can be used in the interpretation of 1
sentences to determine the information to be added to the listener’s knowledge, i.e., :
what the listener should learn from the sentence. Some new forms of abduction are
more appropriate to the task of interpreting natural language than those used in the
traditional diagnostic and design synthesis applications of abduction. In one new form,
least specific abduction, only literals in the logical form of the sentence can be assumed.
The assignment of numeric costs to axioms and assumable literals permits specification
of preferences on different abductive explanations. Least specific abduction is some-
times too restrictive. Better explanations can sometimes be found if literals obtained
by backward chaining can also be assumed. Assumption costs for such literals are de-
termined by the assumption costs of literals in the logical form and functions attached
to the antecedents of the implications. There is a new Prolog-like inference system-that
computes minimum-cost explanations for these abductive reasoning methods.

1 Introduction

We introduce a Prolog-like inference system for computing minimum-cost abductive ex-
planations. This work is being applied to the task of natural-language interpretation,
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Grant CCR~8611116. The views and conclusions contained herein are those of the author and should not
be interpreted as necessarily representing the official policies, either expressed or implied, of the Defense
Advanced Research Projects Agency, the National Science Foundation, or the United States government.
Approved for public release. Distribution unlimited.




but other applications abound. Abductive inference is inference to the best explana-
tion. The process of interpreting sentences in discourse can be viewed as the process
of generating the best explanation as to why a sentence is true, given what is already
known ([8]; this includes determining what information must be added to the listener’s

knowledge (what assumptions must be made) for the listener to know the sentence to
be true.!

To appreciate the value of an abductive inference system over and above that of a
merely deductive inference system, consider a Prolog specification of graduation require-
ments: e.g., to graduate with a computer science degree, one must fulfill the computer
science, mathematics, and engineering requirements; the computer science requirements
can be satisfied by taking certain courses, etc. As an example of a deductive-database
application [11], the graduation requirements generate:

csReq <- basicCS, mathReq, advancedCS, engReq, natSciReq.
engReq <- digSys.

natSciReq <- physicsI, physicsII.

natSciReq <~ chemI, chemII.

natSciReq <~ biol, biolI.

After the addition of facts about courses-a student has taken, such a database can
be queried to ascertain whether the student meets the requirements for graduation.
Evaluating csReq in Prolog will result in a yes or no answer. However, standard Prolog
deduction cannot determine what more must be done to meet the requirements if they
have not already been fulfilled; it would require analysis to find out why the deduction
of csReq failed.

This sort of task can be accomplished by abductive reasoning. Given what is known
in regard to which courses have been taken, what assumptions could be made to render
provable the statement that all graduation requirements have been met?

This paper extends an earlier paper [18] that did not include a description of the
chained specific abduction scheme and its inference rules. Chained specific abduction
provides a means for propagating assumption costs from literals in the formula being
proved to literals obtained by backward chaining; these inherited costs are a very useful
feature for natural-language interpretation [8].

2 Four Abduction Schemes

We will consider here the abductive explanation of conjunctions of positive literals from
Horn clause knowledge bases. An explanation will consist of a substitution for variables

! Alternative abductive approaches to natural-language interpretation have been proposed by Char-
niak (3] and Norvig [12).
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in the conjunction and a set of literals to be assumed. ln short, we are developing an
abductive extension of pure Prolog. '

The general approach can be characterized as follows: when trying to explain why
Q(a) is true, hypothesize P(a) if P(z) D Q(z) is known.

The requirement that assumptions be literals does not permit us to explain Q(«)
when P(a) is known by assuming P(z) D Q(x), or even P(a) D Q{a). We do not regard
this as a limitation in tasks such as diagnosis and natural-language interpretation. Some
other tasks, such as scientific-theory formation, could be cast in terms of abductive
explanation when the assumptions take these more general forms.

We want to include the possibility that @(a) can be explained by assuming Q(a).
As later examples will show, this is vital in the natural-language interpretation task.

Consider again the example of the deductive database for graduation requirements.
All the possible ways of fulfilling the requirements can be obtained by backward chaining
from csReq:

<~ csReq.

<- basicCS, mathReq, advancedCS, engReq, natSciReq.

<- basicCS, mathReq, advancedCS, engReq, physicsI, physicslII.
<~ basicCS, mathReq, advancedCS, engReq, chemI, chemII.

<- basicCS, mathReq, advancedCS, engReq, bioI, bioII.

<- basicCS, mathReq, advancedCS, digSys, natSciReq.

<- basicCS, mathReq, advancedCS, digSys, physicsl, physicsII.
<- basicCS, mathReq, advancedCS, digSys, chemI, chemlI.

<- basicCS, mathReq, advancedCS, digSys, bioI, biollI.

Eliminating from any such clause those requirements that have been met resultsin a
list that, if met, would result in fulfilling the graduation requirements. Different clauses
can be more or less specific about how the remaining requirements must be satisfied. If
the student lacks only Physics II to graduate, the backward-chaining scheme can derive
the statements that he or she can fulfill the requirements for graduation by satisfying
physicsII, natSciReq, or (rather uninformatively) csReq.

The above clauses are all possible abductive explanations for meeting the graduation
requirements.

In general, if the formula @; A -+ - A @, is to be explained or abductively proved, the
substitution [of values for variables] § and the assumptions P, ..., P, would constitute
one possible explanation if (Py A--» A Pp) D (@1 A--- A @r)f is a consequence of the
knowledge base.

If, in the foregoing example, the student lacks only Physics II to graduate, assuming
physicsII then makes csReq provable.




If the explanation contains variables, such as P(z) as an assumption to exp.ain Q(z),
the explanation should be interpreted as neither to assume P{z) for all « (i.e., assume
VzP(z)) nor to assume P(z) for some unspecified z (i.e., assume JzP(a)), but rather
that, for any variable-free instance ¢ of @, if P(t) is assumed, then Q(t) follows.

It is a general requirement that the conjunction of all assumptionsmade be consistent
with the knowledge base. In the natural-language interpretation task, the rejection
of assumptions that are inconsistent with the knowledge base presupposes that the
knowledge base is correct and that the speaker of the sentence is neither mistaken nor
lying,.

With an added factoring operation and without the literal ordering restriction, so
that any, not just the leftmost, literal of a clause can be resolved on, Prolog-style back-
ward chaining is capable-of generating all possible explanations that are consistent with
the knowledge base. That is, every possible explanation consistent with the knowl-

edge base is subsumed by an explanation that is generable by backward chaining and
factoring.

It would be desirable if the procedure were guaranteed to generate . explanations

that are inconsistent with the knowledge base. However, this is impossible, although-

fortunately not all inconsistent explanations are generated; the system can generate
only those explanations that assume literals reached from the initial formula by back-
ward chaining. Consistency of explanations with the knowledge base must be checked
outside the abductive-reasoning inference system. Determining consistency is unde-
cidable in general, though decidable subcases do exist, and many explanations can be
rejected quickly for being inconsistent with the kuowledge base. For example, assump-
tions can be readily rejected if they violate sort or ordering restrictions, e.g., assuming
woman(John) can be disallowed if man(John) is known or already assumed, and as-

suming b < a can be disallowed if a < b-is known or already assumed. Sort restrictions-

are particularly effective in eliminating inconsistent explanations in natural-language
interpretation. We shall not discuss the consistency requirement further; what we are
primarily concerned with here is the process of generating possible explanations, in or-
der of preference according to our cost criteria, not with the extra task of verifying their
consistency with the knowledge base.

Obviously, any clause derived by backward chaining and factoring can be used as a
list of assumptions to prove the correspondingly instantiated initial formula abductively.
This can result in an overwhelming number of possible explanations. Various abductive
schemes have been developed to limit the number of acceptable explanations. These
schemes differ in their specification of which literals are assumable.

What we shall call most specific abduction has been used particularly in diagnostic
tasks. In explaining symptoms in a diagnostic task, the objective is to identify causes
that, if assumed to exist, would result in the symptoms. The most specific causes are
usually sought, since identifying less specific causes may not be as useful. In most
specific abduction, the only literals that can be assumed are those to which backward
chaining can no longer be applied:




What we shall call predicate specific abduction has been used particularly in planning
and design synthesis tasks. In generating a plan or design by specifying its objectives
and ascertaining what assumptions must be made to make the objectives provable,
acceptable assumptions are often expressed in terms of a prespecified set of predicates.
In planning, for example, these might represent the set of executable actions.

We consider what we will call least specific abduction to be well suited to natural-
language-interpretation tasks. It allows only literals in the initial formula to be assumed.
Given that abductive reasoning has been used mostly for diagnosis and planning, and
that least specific abduction tends to produce what would be considered frivolous results
for such tasks, least specific abduction has been little studied. Least specific abduction
is used in natural-language interpretation to seek the least specific assumptions that
explain a sentence. More specific explanations would unnecessarily and often incorrectly
require excessively detailed assumptions.

Although least specific abduction is often sufficient for natural-language interpre-
tation, it is clearly sometimes necessary to assume literals that are not in the initial
formula. We propose chained specific abiuction for these situations. Assumability is
inherited—a literal can ve asrumed if it is an assumable literal in the initial formula or
if it can be obtained by backward chaining from an assumable literal.

2.1 Most Specific Abduction

Resolution based systems for abductive reasoning applied to diagnostic tasks [13,4,5]
have favored the most specific explanations by adopting as assumptions only pure liter-
als, which cannot be resolved with any clause in the knowledge base, that are reached
by backward chaining from the formula to be explained. For causal-reasoning tasks,
this eliminates frivolous and unhelpful explanations for “the watch is broken” such as
simply noting that the watch is broken, as opposed to, perhaps, noting the mainspringis
broken. Also, explanations can be too-specific. In diagnosing the failure of a computer
system, most specific abduction could never merely report the failure of a board if the
knowledge base has enough information about the board structure for the failure to be
explained, possibly in many inconsistent ways, by the failure of its components.

Eesides sometimes providing overly specific explanations, as discussed further in
Section 2.3, the pure-literal based most specific abduction scheme is incomplete: it does
not compute all the reasonable most specific explanations.

Consider explaining instances of the formula P(z)A Q(z) with a knowledge base that
consists of P(a) and Q(b). For most specific abduction, backward chaining to sets of
pure literals- makes P(c) A Q(c) explainable by assuming P(c) and-Q(c) as both literals
are pure, but P(z) A Q(z) is explainable only by assuming P(b) or Q(a), since P(z) and
Q(z) are not pure. The explanation will not be found that assumes P(c) and Q(c), or
any value of = other than a or b, to explain P(z) A Q(z).

Thus, most specific abduction does not lift properly from the case of variable-free
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formulas to the general case; this would not be a problem if we restricted ourselves to
propositional calculus formulas. A solution in the general case would be to require that
all generalizations of any pure literal also be pure. However, this is often impractical,
since the purity of P(c) in the above example would require the purity of P(x), which
is inconsistent with the presence of P(a) in the knowledge base.

A special case of the requirement that generalizations of pure literals be pure would
be to have a set of predicates that do not occur positively, i.e., they appear only in
negated literals, in the knowledge base. But the case of a set of assumable predicate
symbols is handled more generally, without the purity requirement, by predicate specific
abduction (see Section 2.2). This is consistent with much of the practice in diagnostic
tasks, where causal explanations in terms of particular predicates, such as Ab, are often
sought.

2.2 Predicate Specific Abduction

Resolution based systems for, abductive reasoning applied to planning and design syn-
thesis tasks [6] have favored explanations expressed in terms of a prespecified subset of
the predicates, namely, the assumable predicates.

In explaining P(z) A Q(z) with a knowledge base that consists of P(a) and Q(b),
predicate specific abduction would offer the following explanations: (1) Q(b), if P is
assumable, (2) P(a), if @ is assumable, along with (3) P(z)AQ(z), if both are assumable.

2.3 Least Specific Abduction

The criterion for “best explanation” used in natural-language interpretation differs
greatly from that used in most specific abduction for diagnostic tasks. To interpret
the sentence “the watch is broken,” the conclusion will likely be that we should add to
our knowledge the information that the watch currently discussed is broken. The expla-
nation that would be frivolous and unhelpful in a diagnostic task is just right for sentence
interpretation. A more specific causal explanation, such as a broken mainspring, would
be gratuitous.

Associating the assumability of a literal with its purity, as most specific abduction
does, yields not only causally specific explanations, but also taxonomically specific ex-
planations. With axioms such as mercury(z) D liguid(z) and water(z) D liquid(z),
explaining liquid(a), when liguid(a) cannot be proved, would require the assumption
that a was mercury, or that it was water, and so on. Not only are these explanations
more specific than the only fully warranted one that a is simply a liquid, but none
may be correct: for example, @ might be milk, but milk is not mentioned as a possible
liquid. Most specific abduction thus assumes completeness of the knowledge base with
respect to causes, subtypes, and so on. The purity requirement may make it impossible
to make any assumption at all. Ma.ly reasonable axiom sets contain axioms that make




literals, which we would sometimes like to assume, impure and unassumable. For exam-
ple, in the presence of parent(z,y) D child(y, ) and chila(x,y) D parent(y, v), neither
child(a,b) nor parent(b, a) could be assumed, since neither literal is pure.

We note that-assuming any literals, other than those in the initial formula, generally
results in more specific and thus more risky assumptions. When explaining 12 with
P D R (or PA @ D R) in the knowledge base, either R or P (or P and Q) can be
assumed to explain R. Assumption of R, the consequent of an implication, in preference
to the antecedent P (or P and @), results in the fewest consequences. Assuming the
antecedent may result in more consequences, e.g., if other rules such as P D S are
present.

Predicate specific abduction is not ideal for natural-language interpretation either,
since there is no easy division of predicates into assumable and nonassumable, so that
those assumptions that -can be made will be reasonably restricted. Most predicates
must be assumable in some circumstances such as when certain sentences are being
interpreted, but in many other cases should not be assumed.

Least specific abduction, wherein a subset of the literals asked to be proven must
be assumed, comes closer to our ideal of the right method of explanation for natural-
language interpretation. Under this model, a sentence is translated into a logical form
that contains literals whose predicates stand for properties and relationships and whose
variable and. constant arguments refer to entities specified or implied by the sentence.
The logical form is then proved abductively_, with some or all of the variable values filled
in from the knowledge base and the unprovable literals of the logical form assumed.

The motivation for this is the claim that what we should learn from a sentence is
often near the surface and can attained by assuming literals in the logical form of the
sentence. For example, when interpreting the sentence

The car is red.
with the logical form
car(z) A red(z),?

we would typically want to ascertain from the-discourse which car 2 is being discussed
and learn by abductive assumption that it is red and not something more specific, such
as the fact that it is carmine or belongs to a fire chief (whose cars, according to the
knowledge base, might always be red).

2A logical form that insisted upon proving car(z) and assuming red(z) might have been used in-
stead. We prefer this more neutral logical form to allow for alternative:interpretations. The preferred
interpretation is determined by the assignment of costs to-axioms and.assumable literals.




2.4 Chained Specific Abduction

In least specific abduction, only literals in the initial formula can be assumed. Although
this yields the correct result in many cases, it is clearly sometimes necessary to md ke
deeper assumptions that imply the initial formula. When interpreting a piece «f text
which refers to fish and pets, with the logical form

fish(z) Apet(y) A---

fish(z) and pet(y) must be assumed, if no fish or pets are in the knowledge base.

But we would like to consider the possibility that 2 and y refer to the same entity;
we could do this by least specific abduction only if (in our knowledge base) all fish are
pets or all pets are fish, so we could assume one and use it to prove the other.

What is needed are axioms like
fish(z) A fp(z) D pet(z) or pet(z) Apf(z) D fish(z)

which state that fish are sometimes pets or that pets are sometimes fish. The predicates
fp and pf denote the extra requirements for a fish to be a pet or a pet to be a fish.

Effective use of such axioms requires that literals other than those in the initial
formula be assumable. When backward chaining with an implication, chained specific
abduction allows the antecedent literals of the implication to inherit assumability from
the literal that matches the consequent of the implication.

Because pet(y) is assumable, backward-chained to literals fish(y) and fp(y) may be
assumable. Either fish(z) or fish(y) can be assumed and used to facter the other with
the result that z =y, and fp(y)-can be assumed to produce an explanation in which =
and y refer to the same entity.

Factoring some literals obtained by backward chaining and assuming the remain-
ing antecedent literals can also-sometimes yield better explanations. When Q A R is
explained from

PAP,DQ
PAPsDOR

the explanation that assumes P, P,, and P; may be preferable to the one that assumes

Q@ and R. Even if Q and R are not provable, it might not be necessary to assume all of
Py, P,, and P3, since some may be provable.

3 Assumption Costs

A key issue in abductive reasoning is picking the best explanation. Defining this is so
subjective and task dependent-that there is no hope of devising an algorithm that will




always compute only the best explanation. Nevertheless, there are often so many abduc-
tive explanations that 1t is necessary to have some means of eliminating most of them.
We attach nume.ic assumption costs to assumable literals, and compute minimum-cost
abductive explanations in an effort to influence the abductive reasoning system toward
favoring the intended explanations.

We regard the assignment of numeric costs as a part of programming the explanation
task. The values used may be determined by subjective estimates of the likelihood of
various interpretations, or perhaps they may be learned through exposure to a large set
of examples.

In selecting the best abductive explanation, we often prefer, given the choice, that
certain literals be assumed rather than others. For example, for the sentence

The car is red.
with the logical form
car(z) A red(z)

the knowledge base will likely contain both cars and things that are red. However, the
form of the sentence suggests that red(z) is new information to be learned and that
car(z) should be preved from the knowledge base because it is derived from a definite
reference, i.e., a specific car is presumably being discussed. Thus, an explanation that
assumes red(a) where car(a) is provable should be preferred to an explanation that
assumes car(b) where red(b) is provable. A way to express this preference is through
the assumption costs associated with the literals: car(z) could have cost 10, and red(z)
cost 1.

The cost of an abductive explanation could then be the sum of the assumption
costs of all the literals that had to-be assumed: car(a) A red(a) would be the preferred
explanation, with cost 1, and car(b) A red(b) would be another explanation, with the
higher cost 10.

However, if only the cost of assuming literals is counted in the cost of an explanation,
there is in general no effective procedure for computing a minimum-cost explanation.
For example, if we are to explain P, where P is assumable with cost 10, then assuming P
produces an explanation with cost 10, but proving P would result in a better explanation
with cost 0. Since provability of first-order formulas is undecidable in general, it may
be impossible to determine whether the cost 10 explanation is best.

The solution to this difficulty is that the cost of proving literals, as well as the cost
of assuming them, must be included in the cost of an explanation. An explanation that
assumes P with cost 10 would be preferred to an explanation that proves P with cost
50 (e.g., in a proof of 50 steps) but would be rejected in favor of an explanation that
proves P with cost less than 10.




Treating explanation costs as composed only of assumption costs is attractive: why
should we distinguish explanations that differ in the size of their proof, when only their
provability should matter? However, there are substantial advantages gained by taking
into account proof costs as well as assumption costs, in addition to the crucial benefit
of making theoretically possible the search for a minimum-cost explanation.

If costs are associated with the axioms in the knowledge base as well as with assum-
able literals, these costs can be used to encode information on the likely relevance of
the fact or rule to the situation in which the sentence is being interpreted.

Axiom costs can be adjusted to reflect the salience of certain facts. If « is a car
mentioned in the previous sentence, the cost of the axiom car(a) could be adjusted
downward so that the explanation of car(z) A red(z) that assumes red(a) would be
preferred to one that assumes red(c) for some other car c in the knowledge base.

Indeed, the explanation that assumes red(a) should probably be preferred to any
explanation that proves both car(c) and red(c), i.e., there is a red car ¢ in the knowledge
base, even though this last would be a perfect zero-cost explanation if only assumption
costs were used, because the recent mention of a makes it likely that a is the subject-of
the sentence, and the purpose of the sentence is to convey the new information that a
car is red. Interpreting the referent of “the car” as a car that is already known to be
red results in no new information being learned.

We have some reservations about choosing explanations on the basis of numeric costs.
Nonnumeric specification of preferences is an important research topic. Nevertheless,
we have found these numeric costs to be quite practical; they offer an easy way of
specifying that one literal is to be assumed rather than another. When many alternative
explanations are possible, summing numeric costs in each explanation, and adopting an
explanation with minimum total cost, provides a mechanism for comparing the costs
of one proof and set of assumptions against the costs of another. If this method of
choosing explanations is too simple, other means may be too complex to be realizable,
since they would require preference choices among a wide variety of sets of assumptions
and proofs. We provide a procedure for computing a minimum-cost explanation by
enumerating possible partial explanations in order of increasing cost. Even a perfect
scheme for specifying preferences among alternative explanations may not i.ad to an
effective procedure for generating a most preferred one, as there may be no way -of
cutting off the search with the certainty that the best explanation exists among those
so far discovered. Finally, any scheme will be imperfect: people may disagree as to the
best explanation of some data and, moreover, sometimes do misinterpret sentences.

4 Minimum-Cost Proofs

We now present the inference system for computing abductive explanations. This
method applies to predicate specific, least specific, and chained specific abduction. We
have not tried to incorporate most specific abduction into this scheme because of its




incompleteness, its incompatibility with ordering restrictions, and its unsuitability for
natural-language interpretation.

Every literal @; in the initial formula is annotated with its assumption cost ¢;:

¢t Cn
12y

The cost ¢; must be nonnegative; it can be infinite, if @; is not to be assumed.

Every literal P, ir the antecedent of an implication in the knowledge base is anno-
tated with its assumability function f;:

Pi,...,Pin>Q

The input and output values for each f; are nonnegative and possibly infinite. If this
implication is used to backward chain from @, then the literals Py,..., P, will be in
the resulting formula with assumption costs fi(c;), ..., fm(ci).

In predicate specific abduction, costs are associated with predicates, so assumptions
costs are the same for all occurrences of the predicate. Let cost(p) denote the assumption
cost for predicate p. The assumption cost ¢;for literal @; in the initial formula is cost(p),
where the Q; predicate is p; the assumption function f; for literal P; in the antecedent

of an implication is the unary function whose value is uniformly cost(p), where the P;
predicate is p.

In least specific abduction, different occurrences of the predicate in the initial for-
mula may have different assumption costs, but only literals in the initial formula are
assumable. The assumption cost ¢; for literal @); in the initial formula is arbitrarily
specified; the assumption function f; for literal P; in the antecedent of an implication
has value infinity.

In chained specific abduction, the most general case, different occurrences of the
predicate in the initial formula may have different assumption costs; literals obtained
by backward chaining can have flexibly computed assumption costs that depend on the
assumption cost of the literal backward-chained from. The assumption cost ¢; for literal
Q;: in the initial formula is arbitrarily specified; the assumption function f; for literal
P; in the antecedent of an implication can be an arbitrary monotonic unary function.

We have most often used simple weighting functions of the form fj(c) = w; x ¢
(w; > 0). Thus, the implication

P AR2DQ

states that P, and P, imply @, but also that, if @ is assumable with cost ¢, then P;
is assumable with cost w; X ¢ and P, is assumable with cost wy X ¢, as the result of
backward chaining from ). If w; + w2 < 1, more specific explanations are favored, since
the cost of assuming P, and P, is less than the cost of assuming Q. If w; +wy > 1, less
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specific explanations are favored: @ will be assumed in preference to P; and P,. But,
depending on the weights, P; might be assumed in preference to @ if P; is provable.

The cost of a proof is usually taken to be a measure of the syntactic form of the
proof, e.g., the number of steps in the proof. A more abstract characterization of cost
is needed. We want to assign different costs to different inferences by associating costs
with individual axioms; we also want to have a cost measure that is not so dependent
on the syntactic form of the proof.

We assign to each axiom A a cost axiom-cost(A) that is greater than zero. Assump-
tion coste assumption-cost(L) are computed for each literal L. When viewed abstractly,
a proof is a demonstration that the goal follows from a set S of substitution instances
of the axioms, together with, in the case of abductive proofs, a set H of literals that are
assumed in the proof. We want to count the cost of each separate instance of an axiom
or assumption only once instead of the number of times it may appear in the syntactic
form of the proof. Thus, a natural measure of the cost of the proof is

> aziom-cost(A) + Y assumption-cost(L)
Ao€S LeH

Consider the example of explaining Q(z) A R(z) A S(z) with a knowledge base that

includes P(a), P(z) D Q(z), and-@(z) A R(z) D S(x), and with R assumable. By using
Prolog plus an inference rule for assuming literals, we get:

<- Q(x), R(x), s(x).

1.

2. <= P(x), R(x), sS(x). % resolve 1 with Q(x) <~ P(x)

3. <~ R@a), s(a). % resolve 2 with P(a)

4. <~ s(a). % assume R(a) in 3

5. <~ QCa), R(a). % resolve 4 with S(x) <- Q(x), R(x)
6. <- P(a), R(a). % resolve § with Q(x) <- P(x)

7. <~ R(a) % resolve 6 with P(a)

8. <~ true % assume R(a) in 7

Q(z) A R(z) A S(z) is explained with = having the value a under the assumption that
R(a) is true.

The cost of the proof is the sum of the costs of the axiom instances P(a), P(a) D
Q(a), and Q(a) A R(a) D S(a), plus the cost of assuming R(a). The costs of using P(a)
and P(z) D @Q(z) and assuming R(a) are not counted twice even though they were
used twice, since the same instances were used or assumed. If, however, we had used
P(z) D Q(z) with b as well as a substituted for z, then the cost of P(z) A Q(x) would
have been counted twice.

In general, the cost of a proof can be determined by extracting the sets of axiom
instances S and assumptions H from the proof tree and performing the above compu-
tation. However, it is an enormous convenience if there always exists a simple proof
tree such that each separate instance of an axiom or assumption actually occurs only




once in the proof tree. That way, as the inferences are performed, costs can simply
be added to compute the cost of the current partial proof. Even if the same instance
of an axiom or assumption happens to be used and counted twice, a different, cheaper
derivation would use and count it only once. Partial proofs can be enumerated in order
of increasing cost by employing breadth-first or iterative-deepening search methods and
minimum-cost explanations can be discovered effectively. Iterative-deepening search is
compatible with maintaining Prolog-style implementation and performance {17,19,20}.

We shall describe our inference system as an extension of pure Prolog. Prolog,
though complete for Horn sets of clauses, lacks this desirable property of always being
able to yield a simple proof tree.

Prolog’s inference system—ordered input resolution without factoring—would have
to eliminate the ordering restriction and add the factoring operation to remain a form of
resolution and be able to prove @, R from @ « P, R «— P, and P without using P twice.
Elimination of the ordering restriction is potentially very expensive. For example, there
are n! proofs of Q4,...,Q, from the axioths @, ..., @, when unordered input resolution
is used, but only one with ordered input resolution. Implementations of most specific
abduction perform unordered input resolution [13,4,5].

We present a resolution-like inference system, an extension of pure Prolog, that
preserves the ordering restriction and does not require repeated use of the same instances
of axioms. In our extension, literals in goals can be marked with information that
dictates how the literals are to be treated by the inference system, whereas in Prolog,
all literals in goals are treated alike and must be proved. A literal can be marked as
one of the following;:

proved The literal has been proved or is in the process of being proved; in
this inference system, a literal marked as proved will have been fully
proved when no literal to its left remains unsolved.

assumed The literal is being assumed.

unsolved The literal is neither proved nor assumed.

The initial goal clause ¢,...,Q» in a deduction -consists of literals ¢); that are
either unsolved or assumed. If any assumed literals are present, they must precede
the unsolved literals. Unsolved literals must be proved from the knowledge base plus
any assumptions in the initial goal clause or made during the proof, or, in the case
of assumable literals, may be directly assumed. Literals that are proved or assumed
are retained in all successor goal clauses in the deduction and are used to eliminate
matching goals. The final goal clause P, ..., P, in a deduction must consist entirely of
proved or assumed literals P;.

An abductive proof is a sequence of goal clauses Gy,...,G, for which

o G is the initial goal clause.
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o each Gy (1 £ k < p) is derived from G by resolution with a fact or rule, making
an assumption, or factoring with a proved or assumed literal.

¢ G, has no unsolved literals (all are proved or assumed).

These rules differ substantially from those presented in our earlier paper [18], which
were sufficient for predicate specific and least specific abduction, but not for chained
specific abduction.

Predicate specific abduction is quite simple because the assumability and assumption
cost of a literal are determined by its predicate symbol. Least specific abduction is also
comparatively simple because if a literal is not provable or assumable and must be
factored, all assumable literals with which it can be factored are present in the initial
and derived formulas. Because assumability is inherited in chained specific abduction,
the absence of a literal to factor with is not a canse for failure. Such a literal may appear
in a later derived clause after further inference as new, possibly assumable, literals are
introduced by backward chaining.

4.1 Inference Rules

Suppose the current goal G -is-Q7,..., Q% and that Qf is the leftmost unsolved literal.
Then the following inferences are possible.

4.1.1 Resolution with a fact

Let axiom A be a fact ) with its variables renamed, if necessary, so that
it has no variables in common with the goal Gi. Then, if @; and @ are
unifiable with most general unifier o, the goal

Gk-i-l = Q(l:la', ce ,Q;no'
with
cost'(Gry1) = cost'(Gy) + aziom-cost(A)

can be derived, where Q;o is marked as proved in Gy,

The resolution with a fact or rule operations differ from their Prolog counterparts
principally in the retention of Q;o (marked as proved) in the result. Its retention allows
its use in future factoring,.

3Fach literal in a goal Gj.41 resulting from one of these inference rules is proved or-assumed precisely
when its parent literal in G is, unless it is stated otherwise.




4.1.2 Resolution with a rule

Let axiom A be a rule Q « P/ ..., PIm with its variables renamed, if
necessary, so that it has no variables in common with the goal Gy. Then, if
Q; and @ are unifiable with most general unifier o, the goal

Grar = Qf'0,..., Qi3 0, P Yo, .. PIn)g Qfq, ..., Q00
with
cost'(Gi1) = cost'(Gy) + aziom-cost(A)

can be derived, where Q;o is marked as proved in Giy1 and each Pjo is
unsolved.

4.1.3 Making an assumption

The goal
Gk+1 = Gy
with
cost'(Grq1) = cost'(Gi)

can be derived, where Q); is marked as assumed in Gjy;.

Similarly to resolution, Q; is retained in the result, for use in future factoring.

The same result, except for @; being marked as proved instead of assumed, could
be derived by resolution with a fact if assumable literals are asserted as axioms. The
final proof could then be examined to distinguish between proved and assumed literals.
Although using a fact and making an assumption can be merged operationally in this
way, we prefer to regard them as separate operations. An important distinction between
facts and assumable literals is that facts are consistent with the assumed-consistent
knowledge base; assumptions made in an abductive explanation should be checked for
consistency with the knowledge base before being accepted.

4,1.4 Factoring with a proved or assumed literal
If Q; and Q; (j < ¢)* are unifiable with most general unifier o, the goal

F. c’. 13 - I3
Gk+1 = Q? Oyeeny Q;J—ll g, QjJU, Q;{:l] Gyevny Q:':.—l1 0, Q:':-'{'-*'ll Oyevey Q;na'

with
cost'(Gry1) = cost'(Gy)

can be derived, where ¢ = min(cj, c;).

4Q; must have been proved or assumed, since it precedes Q;.




Note that if Q; is a proved literal and ¢} < ¢;, the assumption costs of assumed
literals descended from @, may need to be adjusted also. Thus, in resolution with a
rule, it may be necessary to retain assumption costs fi(c;), ..., fm(ci) in symbolic rather
than numeric form, so that they can be readily updated if a later factoring operation
changes the value of ¢;.

4.1.5 Computing Cost of Completed Proof

If no literal of Gy, is unsolved (all are proved or assumed) and Q,,...,Q;.,
are the assumed literals of Gy,

cost(Gr) = cost'(Gi) + Y ci
fE{ih---.im}

Consider again the example of explaining Q(z) A R(z)AS(z) with R assumable from
a knowledge base that includes P(a), P(z) D Q(z), and @(z) A R(z) D S(z). Proved
literals are marked by brackets [|, assumed literals by braces {}.

1. <- Q(x), R(x), S(x).
2. <~ P(x), [Q(x)], R(x), S(x). % resolve 1 with Q(x) <- P(x)
3. <~ [P(a)], [Q(a)], R(a), S(a). % resolve 2 with P(a)
4. <- [P(a)], [QCa)], {R(a)}, S(a). % assume R(a) in 3
5. <= fp(a)], [Q(a)], {r(a)}, Qa), R(a), [s(a)].
% resolve 4 with S(x) <~ Q(x), R(x)
6. <- [P(a)], [Q(a)], {R(a)}, R(a), [S(a)]. % factor 5
7. <= [P(a)], [QCa)], {rR(a)}, [S(a)]. % factor 6

The abductive proof is complete when all literals are either proved or assumed. Each
axiom instance and assumption was used or made only once in the proof.

The proof procedure can be restricted to disallow any clause in which there are
two identical proved or assumed literals. Identical literals should have been factored if
neither was an ancestor of the other. Alternative proofs are also possible whenever a
literal is identical to an ancestor literal [9,10,15).

If no literals are assumed, the procedure is a disguised form of Shostak’s graph
construction (GC) procedure [15] restricted to Horn clauses, where proved literals play
the role of Shostak’s C-literals. It also resembles Finger’s ordered residue procedure (6],
except that the latter retains assumed literals (rotating them to the end of the clause)
but not proved literals. Thus, it includes the ability of the GC procedure to compute
simple proof trees for Horn clauses and the ability of the ordered residue procedure to
make assumptions in abductive proofs.

Another approach which shares the idea of using least cost proofs to choose expla-
nations is Post’s Least Exception Logic [14]. This is restricled to the propositional




calculus, with first-order problems handled by creating ground inslances, because it
relies upon a translation of default reasoning problems into integer lincaz programming
problems. It finds ets of assumptions, defined by default rules, that are sufficient to
prove the theorem, that are consistent with the knowledge base so far as it has been
instantiated, and that have least cost.

4.2 Search Strategy Refinements

Unless the axioms are carefully written to preclude infinite branches in the search space,
the standard unbounded depth-first search strategy of Prolog is inadequate. Because
of the possibility of making assumptions, branches are even less likely to be terminated
by failure than in regular Prolog processing. Thus, we have generally executed this
inference system with depth-first iterative deepening search with cost’ bounded.

The value of cost’ is incremented by the resolution rules, but not by the assumption
or factoring rules. Factoring does not increase the cost of the final proof, so it is correct
for cost’ to be not incremented in that case. Making an assumption will generally
increase the cost of the proof, but the amount is uncertain when the assumption is
made, since the assumed literal might later be factored with another literal with a lower
-assumption cost. Because the final assumption cost, after such factoring, may be zero,
cost' is incremented by zero so that cost’ remains an admissable, never overestimating,
estimator of the final proof cost cost, and iterative-deepening search will be guaranteed
-to find proofs in order of increasing cost. '

If assumption operations do not increment cost’, then assumptions can be made
and proofs found that are immediately rejected as too costly when the cost of the
completed proof is computed. An extreme case often occurs when assuming a literal
whose assumption cost is infinite; assuming such a literal will lead to an infinite cost
proof, unless the literal is factored with another literal with finite assumption cost.
These zero-cost assumption operations can result in large search space.

This problem can be mitigated in a number of ways. These generally entail in-
crementing cost’ when making assumptions; this results in more search cutoffs, as the
bound on cost’ is more often exceeded.

Assumption of literals with infinite cost can often be eliminated by creating a list
of all predicates that never have finite assumption costs or functions. These literals
need never be assumed, since there is no possibility of the literal being factored with
another literal with finite assumption cost, and the proof cost cannot be reduced to a
finite value.

A Iower bound on the assumption cost can be specified on a predicate-by-predicate
basis. In-the case of those predicates that never have finite assumption costs or functions,
the lower bound can be infinite. With this lower bound instead of the implied lower
bound of zero, cost’ is incremented by the lower bound on assumption cost for the
predicate of the assumed literal. When computing the cost of a completed proof, only




the excess of the assumption costs over their lower bounds is added to cost’ to compute
cost.

A more extreme approach is to simply increment cost’ by the assumption cost of
a literal as it is assumed. (cost’ must be incremented by some smaller finite value in
the case of those literals with infinite assumption cost that might be factorable with
a literal with finite assumption cost.) The value of cost’ must later be decremented if
the literal is factored with another literal with a lower assumption cost. Because nnder
these conditions cost’ may sometimes overestimate the final proof cost, this results in
an inadmissable search strategy: proofs cannot be guaranteed to be found in order of
increasing cost. Nevertheless, this approach may work well in practice, if factoring with
a literal with significantly lower assumption cost is infrequent enough.

5 Future Directions

A valuable extension of this work would be to allow for non-Horn sets of axioms.

Computing minimum-cost proofs from non-Horn sets of axioms is more difficult and
would take us farther from Prolog-like inference systems. A mutually resolving set
of clauses is a set of clauses such that each clause can be resolved with every other.
Shostak [16] proved that mutually resolving sets of clauses, with no tautologies and
with no single atom occurring in every clause, do not have simple proof trees. This
result is true of the GC procedure as well as of resolution. So, although we were able
to use the GC p >cedure to compute simple proof trees for sets of Horn clauses, this
cannot be done f~r non-Horn sets.

For non-Horn clause proofs, an assumption mechanism can be added to a resolution-
based inference system that is complete for non-Horn clauses such as the GC procedure
or the model elimination procedure that is implemented in PTTP [17,19], with more
complicated rules for counting costs to compensate for the absence of simple proof trees.

Alternatively, an assumption mechanism can be added to the matings or connection
method [1,2]. These proof procedures do not require multiple occurrences of the same
instances of axioms. This approach would reduce requirements on the syntactic form
of the axioms (e.g., the need for clauses) so that a cost could be associated with an
arbitrary axiom formula instead of a clause. It would be useful to allow axioms of
the form Py A P, D @ A R, so that the axiom need be used and cost added only once
in proving @ A R. The rationale is, if P, and P, are proved or assumed in order to
abductively prove @, R should also be provable at no additional cost.

6 Conclusion

We have formulated part of the natural-language-interpretation task as abductive infer-
ence. The process-of interpreting sentences in discourse can be viewed as the abductive




inference of those assumptions to be made for the listener to know that the sentence
is true. The forms of abduction suggested for diagnosis, and for design synthesis and
planning, are ger.crully unsuitable for natural-language interpretation. We suggest that
least specific abduction, in which only literals in the logical form can be assumed, is
useful for natural-language interpretation. Chained specific abduction generalizes least
specific abduction to allow literals obtained by backward chaining to be assumed as
necessary.

Numeric costs can be assigned to axioms and assumable literals so that the intended
interpretation of a sentence will hopefully be obtained by computing the minimum-cost
abductive explanation of the sentence’s logical form. Axioms can be assigned different
costs to reflect their relevance to the sentence. Different literals in the logical form
can be assigned different assumption costs according to the form of the sentence, with
literals from indefinite references being more readily assumable than those from definite
references. In chained specific abduction, assumability functions can be associated with
literals in the antecedents of implications, to very flexibly specify at what cost literals
obtained by backward chaining can be assumed.

We have presented a Prolog-like inference system that computes abductive expla-
nations by means of either predicate specific or least specific abduction. The inference
system is designed to compute the cost of an explanation correctly, so that multiple
occurrences of the same instance of an axiom or assumption are not charged for more
than once.

Most of the ideas presented -here have been implemented in the TACITUS project for
text understanding at SRI [7,8].
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A Method for Abductive Reasoning in Natural-Language Interpretation

Mark E. Stickel

Artificial Intelligence Center
SRI International
Menlo Park, California 94025

Introduction

Abductive inference is inference to the best explanation.
The process of interpreting sentences in discourse can
be viewed as the process of generating the best expla-
nation as to why a sentsince is true, given what is al-
ready known (3], tLis includes determining what infor-
mation must be added to the listener’s knowledge (what
assumptions must be made) for the listener to know the
sentence to be true. Some new forms of abduction are
more appropriate to the task of interpreting natural lan-
guage than those used in the traditional diagnostic and
design synthesis applications of abduction. In one new
form, least specific abduction, only literals in the logi-
cal form of the sentence can be assumed. The assign-
ment of numeric costs to axioms and assumable literals
permits specification of preferences on different abduc-
tive explanations. Least specific abduction is somctimes
too restrictive. Better explanations can sometimes be
found if literals obtained by backward chaining can also
be assumed. Assumption costs for such literals ar~ deter-
mined by the assumption costs of literals in the logical
form and functions attached to the antecedents of the
implications. There is a new Prolog-like inference sys-
tem that computes minimum-cost explanations for these
abductive reasoning methods.

We consider here the abductive explanation of con-
junctions of positive literals from Horn clause knowledge
bases. An explanation will consist of & substitution for
variables in the conjunction and a set of literals to be
assumed. In short, we are developing an abductive ex-

*This abstract is condensed from Stickel [7). The research was
supported by the Defense Advanced Research Projects Agency,
under Contract N00014-85-C-0013 with the Office of Naval Re-
zearch, and by the National Science Foundation, under Grant
CCR-8611116. The views and conclusions contained herein are
those of the author and should not be interpreted as necessar-
ily representing the official policies, either expressed or implied,
of the Defense Advanced Research Projects Agency, the National
Science Foundation, or the United States government. Approved
for public release. Distribution unlimited.

tension of pure Prolog.

Four Abduction Schemes

In general, if the formula Q; A .- A Q, is to be ex-
plained or abductively proved, the substitution # and
the assumptions P, ..., P, would constitute one pos-
sible explanation if (PLA---APr) D (Q1A --AQn)f is
a consequence of the knowledge base.

It is a general requirement that the conjunction of
all assumptions made be consistent with the knowledge
base. With an added factoring operation and without
the literal ordering restriction, so that any, not just the
leftmost, literal of a clause can be resolved on, Prolog-
style backward chaining is capable of generating all pos-
sible explanations that are consistent with the knowl-
edge base. That is, every possible explanation consistent
with the knowledge base is subsumed by an explanation
that is generable by backward chaining and factoring. It
would be desirable if the procedure wers guaranteed to
generate no explanations that are inconsistent with the
knowledge base, but this is impossible.

Obviously, any clause derived by backward chaining
and factoring can be used as a list of assumptions to
prove the correspondingly instantiated initial formula
abductively. This can result in an overwhelming num-
ber of possible explanations. Vzrious abductive schemes
have been developed to limit the number of acceptable
explanations. These schemes differ in their specification
of which literals are assumable.

What we shall call most specific abduction has been
used particularly in diagnostic tasks [4,1]. In explaining
symptoms in a diagnostic task, the objective is to iden-
tify causes thut, if assumed to exist, would result in the
symptoms. The most specific causes are usually sought,
since identifying less specific causes may not be as use-
ful. In most specific abduction, the only literals that can
be assumed are those to which beckward chaining can

no longer be applied.

oy




What we shall call predicate specific abduction has
becn used particularly in planning and design synthesis
tasks [2). In generating a plan or design by specifying
its objectives and ascertaining what assumptions must
be made to make the objectives provable, acceptable as-
sumptions are often expressed in terms of a prespecified
set of predicates. In planning, for example, these might
represent the set of executable actions.

The criterion for “best explanation” used in natural-
language interpretation differs greatly from that used in
most specific abduction for diagnostic tasks. To inter-
pret the sentence “the watch is broken,” the conclusion
will likely be that we should add to our knowledge the in-
formation that the watch currently discussed is broken.
The explanation that would be frivolous and unhelpful
in a diagnostic task is just right for sentence interpre-
tation. A mote specific causal explanation, such as a
broken mainspring, would be gratuitous.

Predicate specific abduction is not ideal for natural-
language interpretation either, since there is no easy di-
vision of predicates into assumable and nonassumable,
so that those assumptions that can be made will be rea-
sonably restricted. Most predicates must be assumable
in some circumstances such as when certain sentences
are being interpreted, but in many other cases should
not be assumed.

As an alternative, we consider what we will call least
specific adbduction to be well suited to natural-language-
interpretation tasks. It allows only literals in the initial
formula to be assumed and thereby seeks to discover the
least specific assumptions that explain a sentence. More
specific explanations would unnecessarily and often in-
correctly require excessively detailed assumptions.

We note that assuming any literals other than those
in the initial formula generally results in more specific
and thus more risky assumptions. When explaining R
with P D R (or PAQ D R) in the knowledge base,
either R or P (or P and @) can be assumed to explain
R. Assumption of R, the consequent of an implication,
in preference to the antecedent P (or P and Q), results
in the fewest consequences.

Although least specific abduction is often sufficient for
natural-language interpretation, it is clearly sometimes
necessary to assume literals that are not in the initial
formula. We propose chained specific abduction for these
situations. Assumability is inherited—a literal can be
assumed if it is an assumable literal in the initial formula
or if it can be obtained by backward chaining from an
assumable literal.

Factoring somc literale obtained by backward chaining
and assuming the remaining antecedent literals can also
sometimes yield better explanations. When Q A R is

explained from

PLAP2DQ
P,APsDR

the explanation that assumes Py, P;, and P; may be
preferable to the one that assumes  and R. Even if
Q and R are not provable, it might not be necessary to
assume all of Py, P,, and Ps, since some may be provable.

Assumption Costs

A key issue in abductive reasoning is picking the best ex-
planation. Defining this is so subjective and task depen-
dent that there is no hope of devising an algorithm that
will always compute only the best explanation. Never-
theless, there are often so many abductive explanations
that it is necessary to have some means of eliminating
most of them. We attach numeric assumption costs to
assumable literals, and compute minimum-cost abduc-
tive explanations in an effort to influence the abductive
reasoning system toward favoring the intended explana-
tions.

We regard the assignment of numeric costs as a part

of programming the explanation task. The values used

may be determined by subjective estimates of the likeli-
hood of various interpretations, or perhaps they may be

learned through exposure to a large set of examples.

If only the cost of assuming literals is counted in the :
cost of an explanation, there is in general no effective £
procedure for computing a minimum-cost explanation. A
For example, if we are to explain P, where P is assum-

able with cost 10, then assuming P produces an explana-
tion with cost 10, but proving P would result in a better
explanation with cost 0. Since provability is undecidable

in generel, it may be impossible to determine whether

the cost 10 explanation is best.
The solution is that the cost of proving literals must
also be included in the cost of an explanation. An expla-

nation that assumes P with cost 10 would be preferred :
to an explanation that proves P with cost 50 (e.g., ina ;

proof of 50 steps) but would be rejected in {avor of an
explanation that proves P with cost less than 10.

There are substantial advantages gained by taking into :
account proof costs as well as assumption costs, in addi-
tion to the crucial benefit of making theoretically possi-

ble the search for a minimum-cost explanation.

If costs are associated with the axioms in the knowl- !
edge base as well as with assumable literals, these costs ;
can be used to encode information on the likely relevance °

of the fact or rule to the situation in which the sentenes
is being interpreted.
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We have some reservations about choosing explana-
tions on the basis of numeric costs. Nonnumeric spec-
ification of preferences is an important research topic.
Nevertheless, we have found these numeric costs to be
quite practical; they offer an easy way of specifying that
one literal is to be assumed rather than another. When
tnany alternative explanations are possible, summing nu-
meric costs in each explanation, and adopting an expla-
nation with minimum total cost, provides a mechanism
for comparing the costs of one proof and set of assump-
tions against the costs of another. If this method of
choosing explanations is too simple, other means may be
too complex to be realizable. We provide a procedure for
computing a minimum-cost explanation by enumerating
possible partial explanations in order of increasing cost.
Even a perfect scheme for specifying preferences among
alternative explanations may not lead to an effective pro-
cedure for generating a most preferred one. Finally, any
scheme will be imperfect: people may disagree as to the
best explanation of some data and, moreover, sometimes
do misinterpret sentences.

Minimum-Cost Proofs

We now present the inference system for computing ab-
ductive explanations. This method applies to predicate
specific, least specific, and chained specific abduction

Every literal @, in the initial formula is annotated
with its assumption cost ¢,:

e Qe

The cost ¢, must be nonnegative; it can be infinite, if @,
is not to be assumed.

Every literal P, in the antecedent of an implication in
the knowledge base is annotated with its assumability
function f;:

Pls,...,PI»DQ

The input and output values for each f, are nonnega-
tive and possibly infinite. If this implication is used to
backward chain from Q*, then the literals Py,..., Py,
will be in the resulting formula with assumption costs
(@), fm(ci).

In predicate specific abduction, assumptions costs are
the same for all occurrences of the predicate. Let cost(p)
denote the assumption cost for predicate p. The assump-
tion cost ¢, for literal Q, in the initial formula is cost(p),
where the Q, predicate is p; the assumption function f;
for literal P, in the antecedent of an implication is the
unary function whose value is uniformly cost(p), where

LoD aandia s
tae Iy ywd.»atc s p.

In least specific abduction, different occurrences of the
predicate in the initial formula may have different as-
sumption costs, but only literals in the initial formula
are assumable. The assumption cost ¢; for literal Q, in
the initial formula is arbitrarily specified; the assump-
tion function f, for literal P, in the antecedent of an
implication has value infinity.

In chained specific abduction, the most general case,
different occurrences of the predicate in the initial for-
mula may have different assumption costs; literals ob-
tained by backward chaining can have flexibly computed
assumption costs that depend on the assumption cost of
the literal backward-chained from. The assumption cost
¢; for literal @, in the initial formula is arbitrarily spec-
ified; the assumption function f, for literal P, in the
antecedent of an implication can be an arbitrary mono-
tonic unary function.

We have most often used simple weighting functions of
the form fj(c) = w, x ¢ (w, > 0). Thus, the implication

P"APYDQ

states that P; and P, imply Q, but also that, if Q is
assumable with cost ¢, then P; is assumable with cost
wy X ¢ and P, with cost ws x ¢, as the result of backward
chaining from Q. If w; 4+ w; < 1, more specific explana-
tions are favored, since the cost of assuming P; and P,
is less than the cost of assuming Q. If wy + w2 > 1, less
specific explanations are favored. @ will be assumed in
preference to P; and P,. But, depending on the weights,
P, might be assumed in preference to @ if P, is provable.

We assign to each axiom A a cost aziom-cost(4)
that is greater than zero. Assumption costs
assumption-cost(L) are computed for each literal L.
When viewed abstractly, a proof is a demonstration that
the goal follows from a set S of instances of the axioms,
together with, in the case of abductive proofs, a set H
of literals that are assumed in the proof. We want to
count the cost of each separate instance of an axjiom or
assumption only once instead of the number of times it
may appear in the syntactic form of the proot. Thus, a
natural measure of the cost of the proof is

Z aziom-cost(A) + E assumption-cost{L)
Ac€S LeH

In general, the cost of a proof can be determined by
extracting the sets of axiom instances S and assump-
tions H from the proof tree and performing the above
computation. However, it is an enormous convenience
if there always exists a simple proof tree such that each
separate instance of an axiom or assumption actually
occurs only once in the proof tree. That way, as the
inferences are performed, costs car simply be added to




compute the cost of the current partial proof. Even if
the same instance of an axiom or assumption happens to
be used and counted twice, a different, cheaper deriva-
tion would use and count it only once. Partial proofs can
be enumerated in order of increasing cost by employing
breadth-first or iterative-deepening search methods and
minimum-cost explanations can be discovered effectively.

We shall describe our inference system as an extension
of pure Prolog. Prolog, though complete for Horn sets
of clauses, lacks this desirable property of always being
able to yield a simple proof tree.

Prolog’s inference system-—ordered input resolution
without factoring——would have to eliminate the order-
ing restriction and add the factoring operation to re-
main a form of resolution and be able to prove Q,R
from Q — P, R — P, and P without using P twice.
Elimination of the ordering restriction is potentially very
expensive.

We present a resolution-like inference system, an ex-
tension of pure Prolog, that preserves the ordering
restriction and does not require repeated use of the
same instances of axioms. In our extension, literals in
goals can be marked with information that dictates how
the literals are to be treated by the inference system,
whereas in Prolog, all literals in goals are treated alike

and must be proved. A literal can be marked as one of
the following:

proved The literal has been proved or is in
the process of being proved; in this infer-
ence system, a literal marked as proved
will have been fully proved when no lit-
eral to its left rernains unsolved.

assumed The literal is being assumed.

unsolved The literal is neither proved nor as-
sumed.

The initial goal clause Qy,...,Qy in a deduction con-
sists of literals Q; that are either unsolved or assumed.
If any assumed literals are present, they must precede
the unsolved literals. Unsolved literals must be proved
from the knowledge base plus any assumptions in the ini-
tial goal clause or made during the proof, or, in the case
of assumable literals, may be directly assumed. Literals
that are proved or assumed are retained in all successor
goal clauses in the deduction and are used to eliminate
matching goals. The final goal clause Py,...,Py in 2
deduction must consist entirely of proved or assumed
literals P;.

An abductive proof is a sequence of goal clauses
G,...,Gp for which

¢ G, is the initial goal clause.

o each Giq1 (1 € k < p) is derived from Gy by res-
olution with a fact or rule, making an assumption, '
or factoring with a proved or assumed literal.

e G, has no unsolved literals.

Predicate specific abduction is quite simple because
the assumability and assumption cost of a literal are de-
termined by its predicate symbol. Least specific abduc-
tion is also comparatively simple because if a literal is
not provable or assumable and must be factored, all as-
sumable literals with which it can be factored are present
in the initial and derived formulas. Because assumability
is inherited in chained specific abduction, the absence of
a literal to factor with is not a cause for failure. Such
a literal may appear in a later derived clause after fur-
ther inference as new, possibly assumable, literals are
introduced by backward chaining.

3
L

Inference Rules

Suppose the current goal Gi is Qf',..., Q5 and that
Q' is the leftmost unsolved literal. Then the following
inferences are possible.

Resolution with a fact

Let axiom A be a fact Q made variable-disjoint
from Gi. Then, if Q, and Q are unifiable with
most general unifier o, the goal

Gb+1 = Qixav .. .,Q;‘d
with .
cost'(Gi41) = cost'(Gi) + aziom-cost(A) )J

can be derived, where Q,o is marked as proved
in Gk+l-

The resolution with a fact or rule operations differ
from their Prolog counterparts principally in the reten-
tion of ), (marked as proved) in the result. Its reten-
tion allows its use in future factoring.

Resolution with a rle 3

Let axiom A be a rule Q — P/*,..., P{ made
variable-disjoint from Gj. Then, if Q. and Q
are unifiable with most general unifier o, the
goal ‘
Giyr1 =...,Q03 0, P/ o, ... PIr()0,Q0%s,... 1

with

o i e AL

cost'(Gi41) = cost'(Gi) + axiom-cost(A)
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can be derived, where Q;c is marked as proved
in Gi+1 and each Pjo is unsolved.

Making an assumption

The goal
Giy1 =G

with
cost'(Gr41) = cost'(Gx)

can be derived, where Q, is marked as assumed
in Gk+l-

Factoring with a proved or assumed literal

If Q; and Q; (j < ¢) are unifiable with most
general unifier o, the goal

¢, Cymi Cydi
Gry1 = ...,QJ-’a',...,Q,‘_,¢7,Q,_‘,,+l a,...

with
cost'(Gr41) = cost'(Gi)

can be derived, where ¢} = min(c;, ¢;).

Note that if Q; is a proved literal and c; < c;, the
assumption costs of assumed literals descended from Q;
may need to be adjusted also. Thus, in resolution with
a rule, it may be necessary to retain assumption costs
He)- .., fm(ci) in symbolic rather than numeric form,
so that they can be readily updated if & later factoring
operation changes the value of ¢;.

Computing Cost of Completed Proof

If no literal of Gy is unsolved and Q,,,...,Q;,.
are the assumed literals of Gy,

cost(Gi) = cost'(Gi) + Z ¢
SE€E{i1yrim)

The abductive proof is complete when all literals are
either proved or assumed. Each axiom instance and as-
sumption was used or made only once in the proof.

The proof procedure can be restricted to disallow any
clause in which there are two identical proved or assumed
literals. Identical literals should have been factored if
neither was an ancestor of the other. Alternative proofs
are also possible whenever a literal is identical to an
ancestor literal.

If no literals are assumed, the procedure is a disguised
form of Shostak’s graph construction (GC) procedure [6)
restricted to Horn clauses, where proved literals play the

role of Shostak’s C-literals. It also resembles Finger’s or-
dered residue procedure {2], except that the latter retains
assumed literals (rotating them to the end of the clause)
but not proved literals. Thus, it includes both the abil-
ity of the GC prccedure to compute simple proof trees
for Horn clauses and the ability of the ordered residue
procedure to make assumptions in abductive proofs.

Another approach which shares the idea of using least
cost proofs to choose explanations is Post’s Least Ex-
ception Logic [5]. This is restricted to the propositional
calculus, with first-order problems handled by creating
ground instances, because it relies upon a translation of
default reasoning problems into integer linear program-
ming problems. It finds sets of assumptions, defined by
default rules, that are sufficient to prove the theorem,
that are consistent with the knowledge base so far as it
has been instantiated, and that have least cost.
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A Theory of Abduction Based on Model Preference
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1 Introduction

A number of different frameworks for abductive reason-
ing have been recently advanced. These frameworks ap-
pear on the surface to be quite different. These different
approaches depend on, for example, statistical Bayesian
methods (see Pearl [4] for a survey), minimization of
abnormality (Reiter [6]), default-based methods (Poole
[5]), or assumption-based methods, in which unproved
literals may be added to the theory as assumptions dur-
ing the course of a proof (Stickel [9], Hobbs et al. [2]).

Although these abduction methods are grounded in
the particular theories on which they are based, e.g.,
probability or default logic, there has not yet been a
completely satisfactory theory of abduction in general
that can account for the variety of reasoning and repre-
sentation schemes encountered in all of these methods.
The best effort to date in this direction has been under-
taken by Levesque [3], who characterizes an abduction
problem as finding all sets of explanations a for an ob-
servation f within a theory T". A proposition a is an ex-
planation for 8 if T = (a D f) and T & ~a. Levesque
alters this definition slightly by the introduction of a
belief operator to T', which allows him to abstract from
the particular rules of inference that may be used to
conclude ¢. He considers two possible definitions of the
belief operator, each with different algorithms for com-
puting assumptions that have different computational
properties.

Within any abductive reasoning method there will
generally be a set of assumptions, which could be used
together with the theory to derive the desired con-

clusions. Levesque convincingly demonstrates that no
purely semantic criterion can be used to distinguish
competing assumptions, and proposes a syntactic met-
ric based on the number of literals comprising the syn-
tactic representation of the assumptions. This criterion
will admit a number of competing explanations, each of
which is minimal according to this criterion. Certainly
in a large number of practical problems, one is very
much interested in distinguishing a “best” explanation
among all those that meet the syntactic minimality cri-
terion. Typically such preferences depend on particular
facts about the domain in question. It would there-
fore be desireable if there was some way of expressing
domain-specific preference information within the the-
ory so that syntactically minimal alternatives could be
compared.

A number of proposals have been advanced for se-
mantic criteria for comparing different sets of assump-
tions. For example, if the theory of a domain can be
expressed naturally in terms of the normality and ab-
normality of the individuals in that domain, as is often
the case with diagnostic problems, an obvious criterion
to distinguish assumption alternatives is the number of
abnormal individuals that are implied by the assump-
tions. Minimization of abnormality is 8 very natural
preference criterion in such domains. However, not all
abduction problems are best viewed in terms of abnor-
mality of individuals. In fact, in natural-language pro-
cessing, minimization strategies are quite inappropri-
ate. If a speaker says, “My watch is broken,” minimiza-
tion strategies would consider why a typical speaker’s
own beliefs might support such an utterance. For exam-
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ple, he might believe that the mainspring was broken, or
perhaps a dozen different equally likely mental states.
However, the hearer of such an utterance is really trying
to infer what the speaker intends him to believe. In this
case the intention is most likely reflected by the con-
tent of the utterance itself, i.e., the speaker’s watch is
broken, and not by any more specific cause that would
support such a belief for the speaker. Stickel [9] pro-
poses a different comparison criterion, which he calls
least specific abduction, which is argued to be more ap-
propriate for natural-language interpretation problems.

An alternative to abnormality-based approaches is
to encode information about the desirability of differ-
ent assumptions in the theory itself. In a Bayesian
framework, this is expressed by the prior probabilities
of the causes, and the probabilities of observations given
causes. Another alternative, proposed by Hobbs et al.
[2] involves encoding preferences among assumptions as
weighting factors on antecedent literals of rules.

In this paper, I propose a model-theoretic account of
abduction that represents domain-specific preferences
among assumptions as preferences among the models
of the theory. This proposal is directed toward the goal
of developing a theory of abduction which character-
izes domain-specific preference information abstractly,
and which hopefully can be unified at some point with
model theoretic accounts such as Levesque’s. It is work
in progress, and at this point consists more of definitions
than theorems, but I believe the proposal is worthy of
consideration in the search for a unified theoretical ap-
proach to abduction. Ishall use the weighted abduction
theory of Hobbs et al. [2] as an example of a possible
computational mechanism to realize this approach.

2 A Theory of Abduction Based on
Model Preference

Shoham (8] introduced the idea of model preference as
a general way of expressing various forms of nonmono-
tonic inference. He postulates a partial preference order
on the underlying models of a theory, and the desired
conclusions of the theory are those propositions that are
satisfied in al) the maximally preferred modeis of the

theory. In contrast with this global notion of preferen-
tial entailment, Selman and Kautz (7] introduce a logic

they call model preference default logic, in which the
individual default rules of the theory are interpreted as
local statements of model preferences. For example, the
default rule p — g is interpreted model-theoretically as
a preference for models that satisfy ¢ among all models
that satisfy p.

If abductive reasoning is to be done within a the-
ory, it is possible to give an interpretation to impli-
cations within that theory as expressing local prefer-
ences among models in a manner similar to Selman
and Kautz’s default rules. For example, if p D ¢ is
arule, and ¢ is an observation, then the fact that p can
be assumed as an explanation for ¢ suggests an obvi-
ous model-preference interpretation of the rule: Among
models satisfying ¢, models that satisfy p are “by and
large” preferred to models satisfying —p.

The reason the hedge “by and large” is used in the
above definition is that it cannot be the case that the
abductive interpretation of p D g is that, for all models
that satisfy g, every model that satisfies p is preferred
to every model that satisfies ~p. It may be the case that
other rules in the theory imply preferences that may be
consistent with g, but inconsistent with p. In general,
this criterion is too restrictive to permit the existence of
a consistent model preference ordering for many theo-
ries of practical interest. A weaker interpretation of the
relation between a rule and the model preference or-
der is that every model satisfying p is prefered to some
model satisfying ~pAg. Adding an assumption to a the-
ory restricts the models of the theory. If this restriction
is such that it rules out some models that are known
to be inferior to every mode] of the theory plus the as-
sumptions, and the theory plus the assumptions entails
the observations, then the assumptions are a potential
solution to the abduction problem. A set of assump-
tions A, is preferred to a set of assumptions A; for a
given theory T, if every model of TU A, is preferred to
some model of TU A,. Abduction can thus be regarded
as a problem of finding a set of assumptions that imply
a greatest lower bound on the model-preference relation
among other competing sets of assumptions.

A further possibility that needs to be considered is
that, once an assumption set is found, there may exist
models satisfying sets of assumptions that are inconsis-
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tent with the assumption set under consideration, and
every one of their models are preferred. Interpreted in
terms of domain specific preferences, this.would be a
situation in which p is a possible explanation for g, but
p and r cannot be true simultaneously, and r is almost
always true. In such a situation, we say that the as-
sumption of p is defeated, unless r can be ruled out by
further preferred assumptions.

The following is a precise definition of abduction in
terms of model preference.

Given a theory T, a total, antireflexive, antisymmet-
ric preference relation » on models of T, and an obser-
vation ¢, an abduction problem consists in deriving a
set of assumptions A that satisfies the following condi-
tions:

1. Adequacy. TUAE ¢
2. Consistency. TUA [ ~¢

3. Syntactic minimality. 1f y € A then TUA -
{v} ¢

4. Semantic greatest lower bound. There is no
assumption set A’ such that:

(a) TUA’'is adequate, consistent, and syntacti-
cally minimal
(b) There exists M k= TU A such that for every
METUA M »M
5. Defeat condition. There is no set A” such that

(3) There is some ¢ € A such that TUA" =~y
and there is some M | TU A such that for
every model M =TU A" M"» M.

(b) Defeat exception. There is no set of as-
sumptions A" such that

i.if M ETUA” then M ETUA, and
ii. there exists M” |z TU A” such that for
3Very MIH h TuAIII, MIII * MII.

The adequacy and consistency requirements of this
definition should be obvious. Because it may be possi-
ble to restrict the models of a theory to a favored subset
by making assumptions that have nothing to do with
ihe observation, the syntactic minimality problem im-
poses the requirement on the assumption set that every
assumption must actually contribute to the solution of

the problem. The greatest lower bound condition guar-
antees that the assumption set that constitutes the so-
lution to the problem is one that is preferred to other
assumption sets, provided that it is not defeated. An
assumption set that is potentially defeated is still ad-
missaole as a solution, provided that it meets the defeat
exception condition, i.e., that assumptions can be added
to the set so that every model is superior to some model
of the potentially defeating assumption set. Of course
this extended assumption set will no longer be syntac-
tically minimal, and hence will not be a solution to the
abduction problem. However, ils existence guarantees
the admissibility of the original assumption set.

3 An Algorithm for Computing
Abduction

Hobbs et al. [2] propose an abduction theory character-
ized by horw-clause rules in which antecedent literals are
associated with weighting factors. I shall refer to such
a theory as a weighted abduction theory; it provides a
candidate for a computational realization of a model-
preference abduction theory outlined int the previous
section. A weighted-abduction theory is characterized
by a set of literals (facts) and a set of rules expressed
as implications. A general example of such a rule is

PYPALLADE D g

Each rule is expressed as an implication with a sin-
gle consequent literal, and a conjunction of antecedent
literals p;, each ass ciated with a weighting factor w;.
The goal of an abduction problem is expressed as a con-
junction of literals, each of which is associated with an
assumption cost. When proving a goal g, the abductive
theorem prover can either assume the goal at the given
cost, or find a cule whose consequent unifies with g,
and attempt to prove the antecedent rules as subgoals.
The assumption cost of each subgoal is computed by
multiplying the assumption cost of the goal by the cor-
responding weighting factor. Each subgoal can then
be either assumed at the computed assumption cost, or
unified with a fact in the database (a “zero cost proof”),
or unified with a literal that has already been assumed
(the algorithm only charges once for each assumption
instance), or another rule may be applied. The best
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solution to the abduction problem is given by the set of
assumptions that lead to the lowest cost proof.

A solution to an abduction problem is admissible
only when all the assumptions made are consistent with
each other, and with the initial theory. Therefore, a
correct algorithm requires a check to filter out poten-
tial solutions that rely on inconsistent assumptions.

Another possibility that must be accounted for (and
which was ignored in Stickel's original formulation) is
that in the frequent case in which the goal and its nega-
tion are both consistent with the theory, it will be possi-
ble to prove both the goal and its negation abductively,
in the worst case by assuming them outright. This ab-
duction algorithm guarantees that it is impossible defeat
a proof by proving the negation of any of its assump-
tions at a cost that is cheaper than the cost of the proof
itself.

The complete abduction algorithm can be described
as follows: Given an initial theory T and a goal ¢, gen-
erate all possible candidate assumption sets {A4; ...An}
and sort them in order of increasing cost. Then for each
successive assumption set A; = {¢1,...,¥m}, for each
assumption ¥; in A;, attempt to prove —; given as-
sumptions ¥1,...,¥j-1,¥j41,. - ., ¥m. If this prooffails
(or succeeds only by assuming —¢;) for each j, then A;
is the best assumption set. If any ~¢; is provable with
zero assumptions, then A; is inconsistent and must be
rejected. The remaining possibility is that ~), is prov-
able by making some assumptions. If the cost of the
best proof of any —¢; is less than the cost of A;, then
A; is defeated because its assumptions can be defeated
at a lower cost than they can be assumed, and A; is re-
jected in this case as well. Otherwise, A, is contested,
but not defeated, and we accept it as the best assump-
tion set.

This algorithm can be viewed as computing solutions
to an abduction problem according to the definition in
the previous section, if the weighting factors on the lit-
erals can be interpzeted as constraints on the model-

3 A version of this algorithm has been implemented in the
TACITUS text understanding system [2]. A version of this
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paper has been employed in plan recognition applications

[1).
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preference relation.

A candidate interpretation of the weighting factors in
terms of model preference relations is that if the weights
on the antecedent literals of a rule sum to less than one,
then every model that satisfies the antecedent is pref-
ered to some mode] that satisfies the conjunction of
the negation of the antecedent together with the conse-
quent,

The relative magnitudes of the assumption weight-
ings can be viewed as establishing preferences among
the conclusions of different ru'es of the theory, provided
that they obey certain constraints. If a theory contains
the following two rules:

p"Dq

a<f<l,
,.p-_-)q p

it expresses a preference for models satisfying p over
those satisfying r among those models that satisfy g.
Note that if r entails p, then there will be no models
that satisfy r A =p, and therefore, the preference rela-
tion must be circular. If the abduction algorithm were
to operate on such a theory, in would incorectly com-
pute {p} as the best assumption set, whereas {r} is
clearly superior by the mode] preference criterion, be-
cause it entails p, therefore excluding every model ex-
cluded by assuming p, and other less-preferred models
as well. In general, weighted abduction theories must
be constrained so that the assigned weights do not im-
ply any circularities in the model-preference relation.

4 Conclusion

The idea of characterizing domain-dependent pref-
erence among abductive assumptions as preferences
among models of a theory is worthy of further inves-
tigation. What remains to be done is a full character-
ization of the relationship between weighted abduction
and model-preference abduction, including a full speci-
fication of the relationship between rule weightings and
mode] preferences. The incorporation of a belief opera-
tor to abstract away from particular rules of inference,
following Levesque’s proposal, is another interesting ex-
tension. This could lead to a knowledge-level charac-
terization of abduction theories with domain-dependent
preferences.
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Domain-Independent Task Specification
in
the TACITUS Natural Language System

Mabry Tyson and Jerry R. Hobbs
Artificial Intelligence Center
SRI International

Abstract

Many seemingly very different application tasks for natural lan-
guage systems can be viewed as a matter of inferring the instance of
a prespecified schema from the information in the text and the knowl-
edge base. We have defined and implemented a schema specification
and recognition language for the TACITUS natural language system.
This effort entailed adding operators sensitive to resource bounds to
the first-order predicate calculus accepted by a theorem-prover. We
give examples of the use of this schema language in a diagnostic task,
an application involving data base entry from messages, and a script
recognition task, and we consider further possible developments.

1 Interest Recognition as a Generalization

Natural language discourse functions in human life in a multitude of ways.
Its uses in the computers systems of today are much more restricted, but
still present us with a seemingly wide variety. Our contention, however, is
that beneath this variety one can identify a c‘entral core common to most
applications. By isolating this core and formalizing it in a concise fashion,
one can begin to develop a formal account of the links between a natural
language utterance and the roles it plays in the world, as determined by
the interssts of the hearer. On a practical plane, such an effort allows
one to develop 2 module in which it is possible to specify with significant
economy a wide variety of tasks for a natural language system. In this paper
we describe our implementation of such a module for the TACITYS natural
language system at SRI International.




Processing in the TACITUS system consists of two phases—an interpreta-
tion phase and an analysis phase. In the interpretation phase, an initial log-
ical representation is produced for a sentence by parsing and semantic trans-
lation. This is then elaborated by a “local pragmatics” component which, in
the current implementation, resolves referential expressions, interprets the
implicit relation in compound nominals, resolves some syntactic ambiguities,
and expands metonymies, and in the future will solve other local pragmat-
ics problems such as the resolution of quantifier scope ambiguities as well
as the recognition of some aspects of discourse structure. This component
works by constructing logical expressions and calling on the KADS theorem
prover! to prove or derive them using a scheme of abductive inference. The
theorem prover makes use of axioms in a knowledge base of commonsense
and domain knowledge. Except for the domain knowledge in the knowledge
base, the interpretation phase is completely domain-independent.?

In the analysis phase, the interpreted texts are examined with respect to
the system’s application or task. Rather than writing specific code to per-
form the analysis, we have devised a schema representation to describe the
analysis we wish to do. This declarative approach has allowed us to handle
very different analysis tasks without reprogramming. In the knowledge base
are named schemas which specify the task and can be used to perform the
analysis. These are encoded in a schema representation language which is a
small extension of first-order predicate calculus. This language is-described
in Section 2. In most applications, to perform the required task one has
to prove or derive from the knowledge base and the information contained
in the interpreted text some logical expression in the schema representation
language, stated in terms of canonical predicates, and then produce some
output action that is dependent on the proofs of that expression.

In order to investigate the generality of our approach to task specifica-
tion, we have implemented three seemingly very different tasks involving
three very different. classes of texts. The first is a diagnostic task perfermed
on the information conveyed. in casualty reports, or CASREPS, about break-
downs in mechanical devices on board ships. After the text is interpreted,
the user of the system-may request a diagnosis of the cause of the problems
reported in the message. The schema for this task is described in Section
3.1. The second task is data base entry from text. A news report about
a terrorist incident is read and interpreted, and in the analysis phase, the

!See Stickel (1982, 1989).
2For a detailed description of the interpretation phase, see Hobbs and Martin (1987),
and Hobbs et al. (1988).




system extracts information in the text that can be entered into a data base
having a particular structure. This application is described in Section 3.2.
The third application illustrates our approach to a very common style of
text analysis in which the text is taken to instantiate a fairly rigid schema
or script. The system seeks to determine exactly how the-incidents reported
in the texts map into these prior expectations. This mode of analysisis being
implemented for RAINFORM messages, which are messages about submarine
sightings and pursuits. It is described in Section 3.3.

In Section 4, we briefly discuss future research directions.

Before proceeding, we should note a feature of our representations. Events,
conditions, and, more generally, eventualities are reified as objects that
can have properties. Predicates ending with exclamation points, such as
Adequate! take such eventualities as their first argument. Wheréas Adequate
(lube-oily) says that the lube oil is adequate, Adequate!(e,lube-oily) says
that e is the condition of the lube oil’s being adequate, or the lube oil’s
adequacy. These eventualities may or may not exist in the real world. If
an eventuality e does exist in the real world, then the formula Rexzists(e)
is true. This is to be distinguished from the existential quantifier 3 which
asserts only existence in a Platonic universe, but not in the real world; it
" asserts only the existence of possible objects. It is possible for the eventu-
alities to exist in modal contexts other than the real world, such as those
expressed by the properties Possible and Not-Rezists.3

2 Schemas

A schema is a metalogical expression that is a first-order predicate calcu-
lus form annotated by nonlogical operators for search control and resource
bounds. The task component of TACITUS parses the schema for these oper-
ators and makes repeated calls to the KADS theorem prover on (pure) first-
order predicate calculus forms. The two nonlogical operators are PROVING
and ENUMERATED-FOR-ALL.

2.1 The PROVING operator

Since the first-order predicate calculus is undecidable, an attempt to prove
an arbitrary first-order predicate calculus formula may never terminate.
While this limitation is discouraging, people manage to reason effectively

3See Hobbs (1985) for an elaboration on this notation.
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despite the theoretical limits. In part this is because they limit the effort
spent on problems and do the best they can within those limits. Hypotheses
are formed based on the information known or determined within the limi-
tations. Further investigation can then be done based on these hypotheses.
If that does not pan out, the hypotheses can be rejected. Although full
knowledge and proofs-are desirable and in some cases necessary, it simply is
not always possible.

KADS, our deduction engine, proves formulas in first-order predicate cal-
culus. An oversimplified description of how KADS works is that it first
skolemizes the formula, turning existentially quantified variables in goal ex-
pressions into free variables and making universally quantified variables-into
functions (with the free variables as arguments). The prover then tries to
find bindings for those free variables that satisfy the resulting formula. If
any such set of bindings is found, then the original formula has been proven.

In- interpreting natural language texts, a single formula passed to the
prover is rarely the entire problem. Interpretation requires a number of
such calls. Moreover, the bindings made in a proof often-are used by the
system later in-the interpretation process. If alternative bindings could-have
been used to prove the formula, then they may be needed later if the first
set that was foind leads-to difficulties. KADS is-able to continue tolook for
a proof andtry further-alternative variable bindings, even after it has-found
one valid set.

The nonlogical operator, PROVING, is used in controlling the theor=m.

prover. An expression
(PROVING formula effort outpul-fn)

indicates to the the-analysis module that it should instruct the prover to try
toprovethe formula formula using 2 maximum amount of effort effort. The
results of that proof are then given to the output function output-fn to be
processed. The-output function-typically displays the results to the user but
may also, say, update a data base, send a mail message, or perform some
other-action, depending upon what the user has programmed it to-do.

At each iteration in-one of the-inner loops, the theorem prover checks to
see if the level of effort has been exceeded. If so, all sets of bindings that

have been found for which the formula is true are returned. If none have

been found, the proof has failed. If-multiple proofs have been found, the
analysis-module is given multiple sets of variable bindings.

Our particular implementation allows greatlatitude in how the effort is
described. Two-obvious types of effort limitation are possible. One type
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yields repeatable results; the other does not. An example of the first type
would be to express the effort limitations in, say, the number of unifications
performed. Given the same axiom set and the same problem, the prover
would always return the same results. An example of the second type would
be to limit the proof attempt to take only a certain amount of real time.
This type of limitation may yield different results on different runs. How-
ever, it has the advantage that it is easier to understand for users that are
not experts in theorem proving. Since one of the reasons for limiting the
deductive effort is to provide a responsive system, this type of limitation is
often desirable. '

The output function is called when the theorem prover has exhausted
its resources or has determined that all the answers have been found. The
function is called-with the formula that was passed off to the theorem prover,
the resources that were allowed, and the list of answers that were returned by
the theorem prover. With the KADS theorem prover, each answer contains
not only the set of substitutions that were used but also a representation of
the proof. However, the output functions that we have needed so far only
print messages based upon whether proofs were found and the substitutions
required for them. They typically are short formatting functions that call
upon another function to extract the substitutions from the answers.

2.2 The ENUMERATED-FOR-ALL Operator

The standard predicate logic quantifiers sometimes seem somewhat unnat-
ural. Rather than simply proving existence, it is often much more natural
to find an example. Rather than proving a predicate is true for all possi-
ble variables, it is more natural to verify that the predicate is true for all
appropriate variable bindings.

Toward this end, we have implemented a quantifier which we call ENUM-
ERATED-FOR-ALL. The syntax of this quantifier is

(ENUMERATED-FOR-ALL variables hypothesis conclusion)
The semantics is similar to that of
V (variables) [hypothesis D conclusion)
The difference is that, in the ENUMERATED-FOR-ALL case,-the formula
3(variables) hypotlesis

is passed off to the prover to find all possible variable bindings for which the




hypothesis is true. The resulting expression for the ENUMERATED-FOR-
ALL would be

conclusion; A conclusiona A ...

Thus proving the ENUMERATED-FOR-ALL expression is reduced to proving
this conjunction.
As a simple example, consider

(ENUMERATED-FOR-ALL (z)
[z=2vz=3
Prime(z))

The theorem prover would be called upon to prove
I(z)[z=2Vz=3

and would return two sets of variable bindings. One would specify that z
could be 2 and the other would specify = could be 3.5 The result is that the
ENUMERATED-FOR-ALL expression would be replaced by the expression
Prime(2) A Prime(3).

2.3 Combining ENUMERATED-FOR-ALL and PROVING

The ENUMERATED-FOR-ALL and PROVING pseudo-operators can be com-
bined, as in

(PROVING (3 varlisty (ENUMERATED-FOR-ALL

varlist;
(PROVING hypothesis effort, oulpul-fn,)
conclusion))

Cﬁ0ﬂ2

oulpul-fn,)

In this case, the theorem prover finds all satisfying variable binding sets
for 3 (varlist;) hypothesis that it can within the bounds of effort;,. When
the prover finishes, those sets of bindings are then passed to output-fn, and
also applied to conclusion, and the conjunction of the resulting forms is
then proved within the limitations of effort,. Finally the bindings found in
these proofs are processed by output-fn,.

4This is also similar to Moore’s restrictions on quantifiers (Moore, 1981).
®Note that each of [2=2 V 2=3] and [3.= 2 V 3 = 3] is true.




3 Example Applications
3.1 Diagnosis Task

In the application of the TACITUS system to the analysis of CASREPS, the sys-
tem is given the domain-specific knowledge of what the various components
of the mechanical assemblies are and how they are interconnected, both
physically and functionally. The text given to TACITUS generally states the
symptoms of the failure and possibly the results of investigations on board.
The TACITUS system interprets the text and builds up data structures con-
taining the information gathered from the text. The task component of
TACITUS is then called upon to analyze that information.

The schema in Figure 1 is used to process the information. A search is
made first for conditions (represented by event variables) that are abnormal
but really exist.and then for conditions that are normally present but do
not really exist. Whether conditions are normal or not is pre-specified in
the domain-specific axioms. During the interpretation phase of TACITUS,
all conditions that are mentioned in or implied by the text are determined
either to really exist or not. However, further deduction may be required
during the analysis stage to propagate the existence or nonexistence to other
conditions that are not directly mentioned in the text but can be deduced
from the state of the world described by the text.

Several details are left out for the sake of clarity. The declaration (not
shown) of this schema gives it a name so it can be identified. In this case, this
particular schema was specified to be the default one to be done whenever
the user asked to analyze the interpretation of the text. When the user
asks for analysis, he may specify the name of a different schema to use.

Secondly, the specification of the levels of effort have been removed. For
instance, effort, is actually

(and (time-1o-firsi-proof effori-for-problems)
(time-to-next-proof (x 0.5 effori-for-problems))
(ask-user 1))

which specifies that KADs will be allowed to run on the first problem for an
amount of time indicated by effort-for-problems if it finds no proof. If it has
found a proof, an additional half again as much time will be allowed to find
other proofs. If KADs does not find a proof, it will ask the user whether it
should continue (if so, it acts as though it has used no resources up to that
point). The user may specify the effort-for-problems when he asks for an
analysis, but the schema declaration includes default values (in this case, 30
seconds).
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1. (PROVING
2. (Some (eo)
3. (and 3; Look for those events that do exist but shouldn’t
4. (ENUMERATED-FOR-ALL
5. (81)
6. (PROVING (and (not (Normal ey)) (Rezists e;))
7 effort,
8. casreps-problems-shouldni-ezisi-print-fn)
9. (and (Could-Cause eg €1)
10. (imply (Rezists eg) (Repairable eg)}))
11. ;3 Look for those events that don’t exist but should
12. (ENUMERATED-FOR-ALL
18, (82)
14. (PROVING (and (not (Rezisis e2)) (Normal e2))
15. e 07'12
186. casreps-problems-should-ezist-prini-fn)
17. (and (Could-Prohibit eq e2)
18. (imply (Rezists eo) (Repairable eg)))))
19. Cﬂ(u"t‘?
20. casreps-causes-prini-fn)))
Figure 1: Schema for the CASREPS. Domain ]

Line 1 indicates that we will be looking for some variable ey (of type
ev, meaning it is an event variable) that will be the repairable cause of the
failure. Lines 6 through 8 are expanded into

3(e1) [~Normal(e;) A Rezists(e;)]

which will be passed to the prover with a level of effort effort;. When-that
level of effort has been expended, the function casreps-problems-shouldnt-
ezxist-print-fn informs the users of what conditions exist but normally do
noi. Then if, say, A and B were found by the prover to be two separate
substitutions for e; that satisfy the formula, they are substituted into the
expression in lines 9 and 10, giving

Could-Cause(eq, A)-A [Rezists(eo) D Repairable(eo)) |
A Could-Cause(eo, B)-A [Rezists(eg) D Repairable(eo)) :




Lines 12 through 18 would be handled similaily. If C and D are found
to be valid substitutions for e, then the conjunction that begins on line 3
would become

Could-Cause(eg, A) A [Rezists(ep) D Repairable(eg))
A Could-Cause(eg, B) A [Rezists(eg) D Repairable(eg))
A Could-Prohidit(eg, C) A [Rezists(eg) D Repairable(eg))
A Could-Prohibil(eo, D) A [Rezists(20) D Repairable(eo))

This would then be handed over to KADS with an effort limitation of
efforts in the form of

3(eo)( Could-Cause(eg, A) A [Rezists(eg) D Repairable(eo)]
A Could-Cause(eq, B) A [Rezists(eg) D Repairable(eq))
A Could-Prohibil(e,C) A [Rezists(eo) D Repairable(ep))
A Could-Prohibit(eo, D) A [Rezists(eq) D -Repairable(eo)]).

Note that we are looking for a single cause for all of the problems. Whatever
bindings for eg that-KADS finds are then printed by casreps-causes-print-fn.
The analysis of the text

Unable to maintain lube oil pressure to the starting air compressor.
Inspection of oil filter revealed metal particles.

results in the display of

An eventuality-that shouldn’t exist but does is

X425 (In! X425 metal-58 lube-oill)
An eventuality that should exist but does not is
adequate-nessl (Adequate! adequate-nessl pressurel)

An eventuality that could cause the problems is
(Not-Rexists-intact-ness1) (Intact! intact-nessl bearingsl)

The output indicates that metal particles were found in the lube oil but
should not have been while the pressure of the lube oil was inadequate. The
only cause that was found that could explain both problems was that the
“intactness” of some bearings didn’t really exist, i.e., they were not intact.
In the second sentence, the fact that metal particles were in the oil filter
was derived in the interpretation phase. (Note that it is not explicit in the
sentence,) The step-from there to particles being in the ojl was performed
in the analysis phase.
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3.2 Data Base Entry from Messages

Another important application for a natural language understanding system
is to extract the information of interest contained in messages and enter it

_ into a data base. As our ability to interpret messages increases, this applica-

tion will come to take on greater significance. We have been experimenting
with an implementation that analyzes news reports and enters specified in-
formation about terrorist attacks into a data base.

For example, suppose the sentence is

Bombs have exploded at the offices of French-owned firms in Cat-
alonia, causing serious damage.

The data base entry generated by the TACITUS system from this is:

Incident Type: Bombing
Incident Country: Spain
Responsible Organization: —_

Target Nationality: France
Target Type: Comimnercial
Property Damage: 3

where 3 is the code for serious damage. .

We use a two-part strategy for this task. We first select a set of canonical
predicates, corresponding in a one-to-one fashion to the fields in the data
base. Thus, among the canonical predicates are incident-type, incident-
country, and so.on. The specification of the schema then involves attempt-
ing to prove, from the axioms in the knowledge base and the information
provided by the interpretation of the sentence, expressions involving these
predicates. When such expressions are found, an appropriate action is in-
voked. For now, we simply print out the result, but in a real system a data
base entry routine would be called.

The schema we use is an expanded version of the schema in Figure 2. We
first must find all instances e; of an incident (with its incident type) that we
can find within resource limits effort;. This is done in the hypothesis of the
first ENUMERATED-FOR-ALL, lines 3 - 6. For each such -e;, we must see
whether any of the canonical predicates expressing data base entries can be
inferred. This happens in the calls to PROVING in lines 9-12, 15-18, etc. The
dots in line 20 stand for further calls to prove expressions involving canonical
predicates. For every such entry found, a call is made to the appropriate
print function. A data base entry function could be placed here as well. The
conclusions for the ENUMERATED-FOR~ALLs are all TRUE, because once
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1. (PROVING

2 (ENUMERATED-FOR-ALL (ey)

3. (PROVING

4. (Some (it) (incident-type e, it))
3. ef forty

6. print-incident)

7. (and

8. (ENUMERATED-FOR-ALL (it)
9. (PROVING

10. : (incident-type ey i)

11 ef forly

12. print-incideni-lype)

18. TRUE)

4. (ENUMERATED-FOR-ALL (it)
15. (PROVING

16. (larget-type e, 1t)

17. efforty

18. prini-largei-lype)

19. TRUE)

20. )

21. efforta

28. prini-senience-finished)

Figure 2: Schema for the Data Base Domain

we print the information, there is nothing further we need to do with it in
this application.

The link between the way people express themselves in messages and
what the data base entry routines require is mediated by axioms. Among
the axioms required for the above example are the following:

v (B’ E: E3)
Bomb!(E3, B) A Explode!(E, B) A Rezists(E)
D Incident-type(E, BOMB)

If B is a bomb and F is the event of its exploding and E really exists in
the real world, then the incident type of F is BOM B.

11




V(Eaq, B, Es, X)
At/(E4, E,X) A Bomb!(E3,B) A Ezplode!(E,B) A Rezists(E)
D 3(Bs) Target!(Es, X, E)

If a bomb explodes at X, then X is the target of the exploding incident.

From such axioms as these we can show, for example, that since the firms
are owned by the French, the offices are, and since the offices are, France is
the target nationality.

The method for implementing a data base entry application is therefore
first to construct a schema such as the one above, and then to define axicms
that encode the relationships between these canonical predicates and the
English words used in the message, or their corresponding predicates, and
other predicates that occur in the axioms in the krowledge base. After the
interpretation component has interpreted the messzge, the information in
this interpretation and the axioms in the knowledge base are used to infer
the canonical expressions in the schema.

3.3 Schema or Script Instantiation

Many times the texts of interest are very stylized or describe events or condi-
tions that are very stereotypical. Traditionally in Al, researchers have used
schemas or scripts in situations like this. “Understanding” the text is taken
to mean devermining how the described events instantiate the schema.®

We have begun to examine what are called RAINFORM messages with
this kind of processing in mind. RAINFORM messages describe the sighting
and pursuit of enemy submarines. A sample is the following;:

Visual sighting of periscope followed by attack with ASROC and
torpedoes. Submarine went sinker.

The sequences of avents described by these messages are generally very
similar. A ship sights an enemy submarine or ship, approaches it, and
attacks it, and tbe enemy vessel either counterattacks or tries to flee; in
eith' 1 case there may be damage, and in the latier case the enemy may
escape.

For our purposes, we will assume the task is simply to show how the
events described instantiate this schema, although in a real application we
would want then to perform some further action. This task is, in a way,

®See, for example, Schank and Abelson (1977).
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very similar to the database entry task. We can describe the different steps
of the schema in terms of canonical predicates and then try to infer these
expressions.

One important use schemas or scripts have been put to is in the as-
sumption of default values. Thus, the message might say, “Radar contact
gained.” Here the assumption would be that contact was with an enemy
vessel. Our schema recognition module, working in conjunction with the
abductive inference scheme in KADS, would handle this by attaching an as-
sumability cost to parts of the schema. Then if it could not be proven within
certain resources, it could simply be assumed.

4 Future Directions

We have worked out on paper the schemas for specifying two further tasks,
in more or less detail-the first in more, the second in less. The first task is
the translation of instructions for carrying out a procedure into a program in
some formal or programming language. In structure, this resembles the data
base entry task. The canonical predicates correspond to the constructions 1
the target language makes available; the schema encodes the syntax of the J
target language; and axioms mediate between English expressions and target |
language constructs. It is interesting to speculate whether this approach
could be extended-to the case in which the target language is another natural
language.

The second task is relating an utterance to a presumed plan of the
speaker.” This bears a greater resemblance to the diagnostic task. Very
roughly, for an utterance that is pragmatically an assertion, we must prove
that there is, as a possible subgoal in the plan the speaker is presumed to be
executing, the goal for the hearer to know the information that is asserted
in the utterance. In doing this, we establish the relation of the utterance to
that plan. Utterances that are pragmatically interrogatives and imperatives
can be similarly characterized. One needs, of course, to have the axioms
that will allow the system to reason about the speaker’s plan.

Another area of future research we intend to pursue involves abolishing
the current distinction in the TACITUS system between interpretation and
analysis. In people, interpretation is interest-driven. We often hear only
what we need to or what we want to. Our interests color our interpreta-
tions. Currently, interpretation in TACITUS amounts to proving a logical

LN

"See, for example, Cohen and Perrault (1979) and Perrault and Allen (1980).
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expression closely related to the logical form of the sentence, by means of an
abductive inference scheme which is an extension of deduction. In this pa-
per we have shown how schema recognition can be viewed in a very similar
light. Therefore, we ought to be able to merge the two phases by attempt-
ing to prove the conjunction of the interpretation expression and the schema
fiormula. Then the best interpretation of the text will no-longer be the one
that solves merely the linguistic problems most economically, but the one
that solves those and at the same time relates the text to the hearer’s in-
terests most economically. Of course, many details need to be worked out
vefore this idea turns into an implementation. Nevertheless, the intuition
behind it—that to interpret an utterance is to integrate its information in
the simplest and most coherent fashion with the rest of what one knows and
cares about—seems right.
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